Suppr超能文献

图像细胞术及人工智能相关数值数据分析方法对脂肪肿瘤组织病理学分类的贡献。

The contribution of image cytometry and artificial intelligence-related methods of numerical data analysis for adipose tumor histopathologic classification.

作者信息

Goldschmidt D, Decaestecker C, Berthe J V, Gordower L, Remmelink M, Danguy A, Pasteels J L, Salmon I, Kiss R

机构信息

Department of Plastic Surgery, Erasmus University Hospital, Brussels, Belgium.

出版信息

Lab Invest. 1996 Sep;75(3):295-306.

PMID:8804353
Abstract

Thirty-five lipomatous tumors were quantitatively described using 47 variables generated by means of computer-assisted microscope analysis. Of these 47 quantitative variables, 27 were computed on Feulgen-stained specimens (25 on cytologic and 2 on histologic samples) and, of the remaining 20, 8 related to vimentin and S-100 protein immunostaining patterns and the other 12 to the glycohistochemical staining patterns of peanut agglutinin, succinylated wheat germ agglutinin, and concavalin A agglutinin. The 35 lipomatous tumors included 6 atypical lipomas and 8 well differentiated, 5 dedifferentiated, 6 myxoid, and 10 pleomorphic liposarcomas. The actual diagnostic value contributed by each of the 47 variables with respect to the 5 lipomatous tumor groups was determined by means of the decision tree technique, an artificial intelligence-related algorithm that forms part of the supervised learning algorithms. Of the 47 quantitative variables, the decision tree technique retained 8: i.e., 2 tissue architecture-, 2 DNA ploidy level-, 2 morphonuclear-, 1 lectin histochemical-, and 1 vimentin immunostain-related variables. The decision tree technique made use of these 8 variables to set up logical rules that make it possible to identify atypical lipomas from well differentiated liposarcomas, on the one hand, and dedifferentiated liposarcomas from those that are well differentiated and pleomorphic, on the other. Thus, the combination of an artificial intelligence algorithm analyzing quantitative variables generated by means of the computer-assisted microscope analysis of cytologic and histologic samples from lipomatous tumors can be considered an expert system contributing significant diagnostic information to conventional diagnosis.

摘要

利用计算机辅助显微镜分析生成的47个变量,对35个脂肪瘤性肿瘤进行了定量描述。在这47个定量变量中,27个是在福尔根染色标本上计算得出的(25个在细胞学标本上,2个在组织学标本上),其余20个中,8个与波形蛋白和S-100蛋白免疫染色模式相关,另外12个与花生凝集素、琥珀酰化麦胚凝集素和伴刀豆球蛋白A凝集素的糖组织化学染色模式相关。这35个脂肪瘤性肿瘤包括6个非典型脂肪瘤以及8个高分化、5个去分化、6个黏液样和10个多形性脂肪肉瘤。通过决策树技术确定了这47个变量中每个变量对5个脂肪瘤性肿瘤组的实际诊断价值,决策树技术是一种与人工智能相关的算法,属于监督学习算法的一部分。在这47个定量变量中,决策树技术保留了8个:即2个组织结构相关、2个DNA倍体水平相关、2个形态核相关、1个凝集素组织化学相关和1个波形蛋白免疫染色相关变量。决策树技术利用这8个变量建立逻辑规则,一方面能够将非典型脂肪瘤与高分化脂肪肉瘤区分开来,另一方面能够将去分化脂肪肉瘤与高分化和多形性脂肪肉瘤区分开来。因此,通过对脂肪瘤性肿瘤的细胞学和组织学标本进行计算机辅助显微镜分析生成定量变量,并结合人工智能算法进行分析,可以被视为一个为传统诊断提供重要诊断信息的专家系统。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验