Suppr超能文献

棕色固氮菌固氮酶铁蛋白中的核苷酸水解与蛋白质构象变化:确定天冬氨酸129的功能

Nucleotide hydrolysis and protein conformational changes in Azotobacter vinelandii nitrogenase iron protein: defining the function of aspartate 129.

作者信息

Lanzilotta W N, Ryle M J, Seefeldt L C

机构信息

Department of Chemistry and Biochemistry, Utah State University, Logan 84322, USA.

出版信息

Biochemistry. 1995 Aug 29;34(34):10713-23. doi: 10.1021/bi00034a003.

Abstract

The biological reduction of dinitrogen catalyzed by nitrogenase requires the hydrolysis of a minimum of 16 MgATP for each N2 reduced. The present work examines the role of a strictly conserved aspartic acid residue of nitrogenase iron protein (Fe protein) in coupling MgATP hydrolysis to electron transfer and substrate reduction. The aspartic acid residue at position 129 in the Azotobacter vinelandii Fe protein has been suggested to participate in nucleotide interactions from its location in the X-ray structure near several amino acids previously identified to participate in nucleotide binding and protein conformational changes. The function of this amino acid was probed by changing aspartic acid to glutamic acid (D129E) and asparagine (D129N) by site-directed mutagenesis. The D129N Fe protein proved to be unstable and could not be purified. Characterization of the purified D129E Fe protein revealed a central role for Asp 129 in the nucleotide-induced protein conformational changes in the Fe protein and possibly in the mechanism of MgATP hydrolysis. Data from EPR, circular dichroism spectroscopy, and Fe2+ chelation rates and the chemical shifts of isotropically shifted protons in the 1H NMR spectra implicate Asp 129 in the nucleotide-induced conformational changes in the Fe protein, which are reflected in changes in the environment of the [4Fe-4S] cluster. The D129E Fe protein was found to bind both MgATP and MgADP with high affinity. The Kd determined for MgADP binding (Kd = 131 microM) was comparable to that found for wild-type Fe protein (128 microM). The affinity for MgATP binding was 1.6 times tighter than that for wild-type Fe protein (370 compared to 580 microM). The midpoint reduction potential of the [4Fe-4S] cluster was similar to that determined for the wild-type Fe protein (-290 mV for wild-type Fe protein and -300 mV for D129E Fe protein). Upon the addition of MgATP or MgADP, the midpoint potentials for wild-type and D129E Fe proteins shifted to -430 and -440 mV, respectively. The D129E Fe protein was also found to bind to the molybdenum-iron protein (MoFe protein) with normal affinity, although it could not support electron transfer to the MoFe protein or MoFe protein-stimulated MgATP hydrolysis.

摘要

固氮酶催化的二氮生物还原反应,每还原一分子N₂至少需要水解16分子MgATP。本研究探讨了固氮酶铁蛋白(Fe蛋白)中一个严格保守的天冬氨酸残基在将MgATP水解与电子转移及底物还原相偶联过程中的作用。在棕色固氮菌Fe蛋白中,第129位的天冬氨酸残基,从其在X射线结构中的位置来看,位于先前已确定参与核苷酸结合和蛋白质构象变化的几个氨基酸附近,因而被认为参与了核苷酸相互作用。通过定点诱变将天冬氨酸分别替换为谷氨酸(D129E)和天冬酰胺(D129N),以此来探究该氨基酸的功能。结果表明,D129N Fe蛋白不稳定,无法纯化。对纯化后的D129E Fe蛋白进行表征发现,Asp 129在核苷酸诱导的Fe蛋白构象变化中起核心作用,可能也参与了MgATP水解机制。电子顺磁共振(EPR)、圆二色光谱、Fe²⁺螯合速率以及¹H NMR谱中各向同性位移质子的化学位移数据表明,Asp 129参与了核苷酸诱导的Fe蛋白构象变化,这在[4Fe - 4S]簇的环境变化中得以体现。研究发现,D129E Fe蛋白能以高亲和力结合MgATP和MgADP。测定得到的MgADP结合解离常数(Kd = 131 μM)与野生型Fe蛋白的相近(128 μM)。其对MgATP的结合亲和力比野生型Fe蛋白高1.6倍(野生型为580 μM,D129E为370 μM)。[4Fe - 4S]簇的中点还原电位与野生型Fe蛋白的相近(野生型Fe蛋白为 - 290 mV,D129E Fe蛋白为 - 300 mV)。加入MgATP或MgADP后,野生型和D129E Fe蛋白的中点电位分别变为 - 430 mV和 - 440 mV。此外,还发现D129E Fe蛋白能以正常亲和力与钼铁蛋白(MoFe蛋白)结合,不过它无法支持向MoFe蛋白的电子转移或MoFe蛋白刺激的MgATP水解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验