Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0340, United States.
Chem Rev. 2020 Jun 24;120(12):5158-5193. doi: 10.1021/acs.chemrev.9b00663. Epub 2020 Jan 30.
Nitrogenase is the only enzyme capable of reducing N to NH. This challenging reaction requires the coordinated transfer of multiple electrons from the reductase, Fe-protein, to the catalytic component, MoFe-protein, in an ATP-dependent fashion. In the last two decades, there have been significant advances in our understanding of how nitrogenase orchestrates electron transfer (ET) from the Fe-protein to the catalytic site of MoFe-protein and how energy from ATP hydrolysis transduces the ET processes. In this review, we summarize these advances, with focus on the structural and thermodynamic redox properties of nitrogenase component proteins and their complexes, as well as on new insights regarding the mechanism of ET reactions during catalysis and how they are coupled to ATP hydrolysis. We also discuss recently developed chemical, photochemical, and electrochemical methods for uncoupling substrate reduction from ATP hydrolysis, which may provide new avenues for studying the catalytic mechanism of nitrogenase.
固氮酶是唯一能够将 N 还原为 NH 的酶。这个具有挑战性的反应需要从还原酶(Fe 蛋白)到催化组件(MoFe 蛋白)以 ATP 依赖性的方式协调地传递多个电子。在过去的二十年中,我们对固氮酶如何协调电子从 Fe 蛋白转移到 MoFe 蛋白的催化位点以及 ATP 水解如何传递 ET 过程有了更深入的理解。在这篇综述中,我们总结了这些进展,重点介绍了固氮酶组分蛋白及其复合物的结构和热力学氧化还原特性,以及关于催化过程中 ET 反应的机制以及它们如何与 ATP 水解偶联的新见解。我们还讨论了最近开发的用于将底物还原与 ATP 水解解偶联的化学、光化学和电化学方法,这可能为研究固氮酶的催化机制提供新的途径。