Lipsitz S R, Fitzmaurice G M, Sleeper L, Zhao L P
Department of Biostatistics, Harvard School of Public Health, Boston, Massachusetts 02115, USA.
Biometrics. 1995 Jun;51(2):562-70.
The joint distribution of repeated binary observations is multinomial, and can be specified using a representation first suggested by Bahadur (1961, in Studies in Item Analysis and Prediction,158-168. Stanford, California: Stanford University Press), and later by Cox (1972, Applied Statistics 21, 13-120). Using the Bahadur representation, the marginal probabilities of success can be related to a set of covariates using the logistic link function, or any other suitable link function. Besides the parameters of the marginal regression model, we may also have interest in the probability of success on any of the repeated measures. For example, in the Six Cities study, a longitudinal study of the health effects of air pollution, we have interest in both the marginal probability of a child wheezing at age t (t = 10, 11, 12), and the union probability of wheezing at any of the three ages. This "union" probability can be specified in terms of the joint probabilities and the second higher-order correlations. We discuss several methods of estimating the parameters of the Bahadur model.
重复二元观测值的联合分布是多项分布的,并且可以使用由巴哈杜尔(1961年,《项目分析与预测研究》,第158 - 168页。加利福尼亚州斯坦福:斯坦福大学出版社)首先提出、后来由考克斯(1972年,《应用统计学》21卷,第13 - 120页)提出的一种表示方法来指定。使用巴哈杜尔表示法,成功的边际概率可以通过逻辑链接函数或任何其他合适的链接函数与一组协变量相关联。除了边际回归模型的参数外,我们可能还对任何重复测量中的成功概率感兴趣。例如,在“六城市研究”(一项关于空气污染对健康影响的纵向研究)中,我们既对儿童在t岁(t = 10、11、12)时喘息的边际概率感兴趣,也对在这三个年龄中的任何一个年龄喘息的并集概率感兴趣。这个“并集”概率可以根据联合概率和二阶高阶相关性来指定。我们讨论几种估计巴哈杜尔模型参数的方法。