Suppr超能文献

An empirical Bayes approach to smoothing in backcalculation of HIV infection rates.

作者信息

Liao J, Brookmeyer R

机构信息

Department of Biostatistics, Johns Hopkins University, Baltimore, Maryland 21205, USA.

出版信息

Biometrics. 1995 Jun;51(2):579-88.

PMID:7662847
Abstract

Backcalculation is a methodology to reconstruct the past human immunodeficiency virus (HIV) infection rates from the AIDS incidence data and incubation distribution by deconvolution. Smoothing has proved important in backcalculation, and a key question is how to choose the amount of smoothing. This paper proposes an empirical Bayes approach in which the smoothing parameter is estimated from the data. We introduce a family of priors that reflect the notion of closeness of neighboring infection rates. The variance parameter in the prior family plays the role of the smoothing parameter and is estimated by a method similar to the residual maximum likelihood in linear random effects model through an efficient EM (expectation/maximization) algorithm. A number of penalized likelihood functions that have been used in backcalculation have an empirical Bayes formulation. A bootstrap confidence interval for the infection rates is proposed. The methodology is illustrated with United States AIDS incidence data.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验