Holtzer M E, Holtzer A
Department of Chemistry, Washington University, St. Louis, MO 63130, USA.
Biopolymers. 1995 Sep;36(3):365-79. doi: 10.1002/bip.360360310.
Decomposition of CD spectra for the unfolding of both coiled-coil and single-helical molecules is carried out via the convex constraint algorithm (CCA) [A. Perczel, M. Hollósi, G. Tusnády, and G. D. Fasman (1991) Protein Engineering, Vol. 4, pp. 669-679]. Examined are (1) our thermal unfolding data for rabbit alpha alpha-tropomyosin and chicken gizzard gamma gamma-tropomyosin coiled coils, and for a 35-residue, tropomyosin-model peptide that forms single helices, not coiled coils; (2) extent pH-induced unfolding data for 50- and 400-residue poly-L-glutamic acid. Each set of spectra shows a sharp isodichroic point near 203 nm. We find here that the CCA is of sharply limited use for analyzing such data. The component spectra obtained for a given substance not only depend on the particular experimental spectra included and on the chosen number of component spectra, but all pass through the experimental isodichroic point. The latter is physically unlikely for more than three component spectra, and physically impossible for conformers, such as beta structures, having known isodichroic points elsewhere. Our conclusions are in contrast to those of an extant decomposition via CCA of thermal spectra for rabbit alpha alpha-tropomyosin [N. J. Greenfield and S. E. Hitchcock-DeGregori (1993) Protein Science, Vol. 2, pp. 1263-1273] that postulates the existence of five conformers, including beta structures, in the unfolding. Moreover, an extant diagnostic based on the theta 222/theta 208 ratio and allegedly distinguishing between spectra for coiled coil and for single alpha-helix is shown here to be unreliable.
通过凸约束算法(CCA)[A. Perczel、M. Hollósi、G. Tusnády和G. D. Fasman(1991年),《蛋白质工程》,第4卷,第669 - 679页]对卷曲螺旋和单螺旋分子展开过程中的圆二色光谱进行分解。研究对象包括:(1)我们对兔αα - 原肌球蛋白和鸡砂囊γγ - 原肌球蛋白卷曲螺旋以及一种形成单螺旋而非卷曲螺旋的35个残基的原肌球蛋白模型肽的热展开数据;(2)50个和400个残基的聚 - L - 谷氨酸的pH诱导展开数据。每组光谱在203 nm附近都显示出一个尖锐的等吸收点。我们发现,CCA在分析此类数据时用途极为有限。给定物质得到的组分光谱不仅取决于所包含的特定实验光谱和所选的组分光谱数量,而且都通过实验等吸收点。对于超过三个组分光谱来说,后者在物理上不太可能,对于在其他地方具有已知等吸收点的构象体(如β结构)来说则在物理上是不可能的。我们的结论与通过CCA对兔αα - 原肌球蛋白热光谱进行的现有分解结果[ N. J. Greenfield和S. E. Hitchcock - DeGregori(1993年),《蛋白质科学》,第2卷,第1263 - 1273页]相反,该分解结果假设在展开过程中存在包括β结构在内的五种构象体。此外,这里表明基于θ222 / θ208比值且据称可区分卷曲螺旋和单α螺旋光谱的现有诊断方法并不可靠。