Salinas J A, McGaugh J L
Center for the Neurobiology of Learning and Memory, University of California, Irvine 92717-3800, USA.
Neurobiol Learn Mem. 1995 May;63(3):277-85. doi: 10.1006/nlme.1995.1032.
These experiments examined the effect of the GABAA agonist, muscimol (MUS), on memory for changes in reward magnitude. In Experiment 1 rats were trained to run a straight alley for either a large or small food reward. After reaching asymptotic performance rats in the high reward group were shifted to the small food reward. Half the animals received 1.0 or 3.0 mg/kg (ip) of MUS or the equivalent volume of saline immediately after training. Shifted training continued for 3 more days and no further injections were given. Shifted saline animals displayed an increase in response latencies compared to unshifted controls with a sharp peak on the day after the shift. Shifted MUS receiving 1.0 mg/kg performed comparably to shifted saline animals. In contrast, Shifted MUS animals receiving 3.0 mg/kg displayed performance comparable to shifted saline animals on the day of the shift but displayed a sharp increase in response latencies on the second day after the shift. These findings indicate that post-training systemic MUS injections delay the peak increase in response latencies and suggest that MUS induces retrograde amnesia for reward reduction. Experiment 2 examined the effect of MUS on the memory of a reward increase. Rats were first trained as in Experiment 1 and rats under the high reward condition were then shifted to the small reward. On the next training session, the large food reward was reinstated.(ABSTRACT TRUNCATED AT 250 WORDS)