Suppr超能文献

Functional increases in cerebral blood volume over somatosensory cortex.

作者信息

Narayan S M, Esfahani P, Blood A J, Sikkens L, Toga A W

机构信息

Department of Neurology, UCLA School of Medicine 90024-1769, USA.

出版信息

J Cereb Blood Flow Metab. 1995 Sep;15(5):754-65. doi: 10.1038/jcbfm.1995.95.

Abstract

We have examined the relationship between cerebral blood volume (CBV) and electrophysiology over primary somatosensory cortex (S-I) in the rat. We did this by comparing the spatial characteristics and time course of activity-related changes in plasma fluorescence, intrinsic optical reflectance signals, and single unit electrophysiology in S-I to identical stimuli. S-Is of urethane-anesthetized male Sprague-Dawley rats were exposed, and fluorescent Texas Red dextran dye (MW 70,000) was administered intravenously. Subsequently, foredigit electroshock or vibrissal deflection was associated with fluorescence increases over contralateral forelimb or posteromedial barrel subfield cortex. Fluorescence was delayed and prolonged, indicating that CBV increases at 1-1.5 s and peaks 2-2.5 s after the onset of stimulation in both regions. When stimulus intensity was adjusted to produce barely detectable fluorescence foci (10% above back-ground), significant electrophysiologic spiking was seen. At these parameters, fluorescence change overlay areas of increased cortical layer III cell firing on single unit recordings. However, surface boundaries of the smallest observable fluorescence foci at their peak spatial extents consistently overspilled electrophysiologic center receptive fields. Corresponding intrinsic optical reflectance decreases were seen at 610 and 850 nm, exhibiting similar timing and colocalizing closely with fluorescence increase at both wavelengths after identical stimuli. These signals similarly overspilled electrophysiologic activity. Thus, we observed delayed increases in vascular fluorescence (related to CBV) over activated cortex. The smallest detectable fluorescence changes overspilled the center receptive field boundaries and were associated with appreciable electrophysiologic firing. In addition, the striking spatial and temporal similarity between intrinsic optical reflectance and fluorescence activity suggests that changes in intrinsic cortical reflectance are strongly related to changes in CBV.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验