Helluy S M, Ruchhoeft M L, Beltz B S
Department of Biological Sciences, Wellesley College, Massachusetts 02181, USA.
J Comp Neurol. 1995 Jul 3;357(3):433-45. doi: 10.1002/cne.903570308.
The allometric changes characterizing the growth of the deutocerebrum (midbrain) of the American lobster (Homarus americanus) are studied using computerized three-dimensional reconstructions of serial brain sections. During the embryogenesis of the midbrain, the paired accessory lobes (higher order processing areas) appear later than the paired olfactory lobes (primary olfactory centers), but the former grow faster from their emergence until metamorphosis. The accessory lobes, as they enlarge, shift progressively from a medial to a posterior position in the lateral deutocerebrum. In early juvenile stages the accessory lobes are one of the largest neuropils of the brain. However, these lobes stop growing in adult animals, whereas the brain and olfactory lobes continue to enlarge, albeit at a slow rate. The overall shape of the brain and the relative proportions and locations of the deutocerebral neuropils and associated cell clusters of various lobster ontogenetic stages are similar to those of selected adult decapods. In addition, the relation between deutocerebral organization and brain size seem parallel during lobster development and across crustacean species. Measurements of the brains of 13 species of decapods (illustrated in Sandeman et al. [1993] J. Exp. Zool. 265:112, plus Homarus) indicate the following trends: Small brains possess olfactory lobes but no accessory lobes, larger brains possess accessory lobes that are medial and small relative to the olfactory lobes, and the largest brains contain relatively voluminous posterior accessory lobes. These observations indicate that some differences in the organization of the deutocerebrum are related to absolute brain size in crustaceans and suggest that ontogenetic scaling of proportions may apply to the deutocerebral neuropils of decapods. Peramorphosis and paedomorphosis in the evolution of the decapod brain are considered.
利用连续脑切片的计算机三维重建技术,研究了美洲龙虾(美洲螯龙虾)中脑(后脑)生长过程中的异速生长变化。在中脑胚胎发育过程中,成对的副叶(高阶处理区域)比成对的嗅叶(主要嗅觉中枢)出现得晚,但前者从出现到变态发育阶段生长得更快。随着副叶的增大,它们在外侧后脑从内侧位置逐渐向后移位。在幼年早期,副叶是脑中最大的神经纤维网之一。然而,这些叶在成年动物中停止生长,而脑和嗅叶继续增大,尽管速度缓慢。不同龙虾个体发育阶段的脑的整体形状、后脑神经纤维网以及相关细胞簇的相对比例和位置,与选定的成年十足目动物相似。此外,在龙虾发育过程中和不同甲壳类物种之间,后脑组织与脑大小之间的关系似乎是平行的。对13种十足目动物(见桑德曼等人[1993年]《实验动物学杂志》265:112,加上美洲螯龙虾)的脑进行测量,结果显示出以下趋势:小脑有嗅叶但没有副叶,较大的脑有相对于嗅叶较小的内侧副叶,而最大的脑含有相对体积较大的后侧副叶。这些观察结果表明,后脑组织的一些差异与甲壳类动物的绝对脑大小有关,并表明比例的个体发育缩放可能适用于十足目动物的后脑神经纤维网。文中还考虑了十足目动物脑进化过程中的超形变和幼态持续现象。