Suppr超能文献

Glutamate exocytosis from cerebellar granule cells: the mechanism of a transition to an L-type Ca2+ channel coupling.

作者信息

Pocock J M, Cousin M A, Parkin J, Nicholls D G

机构信息

Department of Biochemistry, University of Dundee, Scotland, UK.

出版信息

Neuroscience. 1995 Aug;67(3):595-607. doi: 10.1016/0306-4522(95)00061-m.

Abstract

When cerebellar granule cells in the presence of 1.3 mM calcium chloride (Ca2+) are depolarized by high potassium chloride (KCl), the release of endogenous glutamate is coupled to a high threshold Ca2+ channel blocked by the spider toxin omega Agatoxin-glutamate-release-inhibitor (Aga-GI) and insensitive to the L-type voltage-dependent Ca2+ channel-inhibitor nifedipine. A prolonged KCl depolarization in the absence of Ca2+ followed by addition of 5 mM Ca2+ results in an enhanced nifedipine-sensitive Ca2+ entry; glutamate exocytosis retains sensitivity to tetanus toxin and bafilomycin A1, is now totally inhibited by nifedipine and shows greatly reduced sensitivity to AGA-GI. Single cell Ca2+ imaging indicates that the L-type channel modulating release is preferentially located at somatic regions rather than neurites. A different pattern of vesicle endocytosis monitored with the fluorescent indicator FM1-43 is seen in response to the two depolarization protocols. Furthermore, vesicles loaded during depolarization with high KCl in the presence of 5 mM Ca2+ extensively exocytose dye in a nifedipine-insensitive manner in response to a second similar stimulation but release little dye in response to stimulus with high KCl in the absence of Ca2+ followed by the addition of 5 mM Ca2+. In contrast, vesicles loaded by stimulating with KCl in the absence of Ca2+ followed by the addition of 5 mM Ca2+ can be released by a second similar stimulus and this release is sensitive to nifedipine. Nifedipine sensitivity is not induced in cerebellar synaptosomes subjected to stimulation with high KCl in the absence of Ca2+ followed by the re-addition of 5 mM Ca2+. The results indicate that different populations of channels and vesicles may be functional during two depolarization protocols.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验