Anthony N M, Harrison J B, Sattelle D B
AFRC Laboratory of Molecular Signalling, Department of Zoology, University of Cambridge, England.
EXS. 1993;63:172-209. doi: 10.1007/978-3-0348-7265-2_8.
Receptors for 4-aminobutyric acid (GABA) have been identified in both central and peripheral nervous systems of several invertebrate phyla. To date, much of the information derived from physiological and biochemical studies on insect GABA receptors relates to GABA-gated chloride channels that show some similarities with vertebrate GABAA receptors. Like their vertebrate central nervous system (CNS) counterparts, agonist activation of such insect GABA receptors leads to a rapid, picrotoxin-sensitive increase in chloride ion conductance across the cell membrane. In insects, responses to GABA can be modulated by certain benzodiazepines and barbiturates. However, recent studies have detected a number of striking pharmacological differences between GABA-gated chloride channels of insects and vertebrates. Receptor binding, electrophysiological and 36Cl- flux assays have indicated that many insect receptors of this type are insensitive to the vertebrate GABAA antagonists bicuculline and pitrazepin. Benzodiazepine binding sites coupled to insect GABA receptors display a pharmacological profile distinct from that of corresponding sites in vertebrate CNS. Receptor binding studies have also demonstrated differences between convulsant binding sites of insect and vertebrate receptors. Insect GABA receptor molecules are important target sites for several chemically-distinct classes of insecticidally-active molecules. By characterizing these pharmacological properties in detail, it may prove possible to exploit differences between vertebrate and insect GABA receptors in the rational design of novel, more selective pest control agents. The recent application of the powerful techniques of molecular biology has revealed a diversity of vertebrate GABAA receptor subunits and their respective isoforms that can assemble in vivo to form a multiplicity of receptor subtypes. Molecular cloning of insect GABA receptor subunits will not only enhance our understanding of invertebrate neurotransmitter receptor diversity but will also permit the precise identification of the sites of action of pest control agents.
在几个无脊椎动物门的中枢和外周神经系统中都已鉴定出4-氨基丁酸(GABA)受体。迄今为止,从对昆虫GABA受体的生理和生化研究中获得的许多信息都与GABA门控氯离子通道有关,这些通道与脊椎动物的GABAA受体有一些相似之处。与脊椎动物中枢神经系统(CNS)中的对应物一样,此类昆虫GABA受体的激动剂激活会导致细胞膜上氯离子电导快速增加,且对印防己毒素敏感。在昆虫中,对GABA的反应可被某些苯二氮䓬类药物和巴比妥类药物调节。然而,最近的研究发现昆虫和脊椎动物的GABA门控氯离子通道之间存在一些显著的药理学差异。受体结合、电生理和36Cl-通量测定表明,许多此类昆虫受体对脊椎动物GABAA拮抗剂荷包牡丹碱和匹他泽平不敏感。与昆虫GABA受体偶联的苯二氮䓬结合位点显示出与脊椎动物中枢神经系统中相应位点不同的药理学特征。受体结合研究还证明了昆虫和脊椎动物受体的惊厥剂结合位点之间存在差异。昆虫GABA受体分子是几类化学性质不同的杀虫活性分子的重要靶位点。通过详细表征这些药理学特性,有可能在合理设计新型、更具选择性的害虫控制剂时利用脊椎动物和昆虫GABA受体之间的差异。分子生物学强大技术的最新应用揭示了多种脊椎动物GABAA受体亚基及其各自的同工型,它们可在体内组装形成多种受体亚型。昆虫GABA受体亚基的分子克隆不仅将增进我们对无脊椎动物神经递质受体多样性的理解,还将允许精确鉴定害虫控制剂的作用位点。