Suppr超能文献

Terminals of subthalamonigral fibres are enriched with glutamate-like immunoreactivity: an electron microscopic, immunogold analysis in the cat.

作者信息

Rinvik E, Ottersen O P

机构信息

Department of Anatomy, Institute of Basic Medical Sciences, Oslo, Norway.

出版信息

J Chem Neuroanat. 1993 Jan-Feb;6(1):19-30. doi: 10.1016/0891-0618(93)90004-n.

Abstract

Wheatgerm agglutinin-horseradish peroxidase (WGA-HRP) histochemistry was combined with post-embedding immunogold cytochemistry in order to establish whether the subthalamic nucleus (STN) gives origin to glutamate (Glu)-enriched nerve terminals in substantia nigra, pars reticulata (SNr). Two adult cats served as normal controls and in two other animals crystalline WGA-HRP had been implanted bilaterally in STN. In all four animals ultrathin sections from SN were subjected to an immunogold procedure using antiserum raised against either Glu or gamma-aminobutyric acid (GABA). In some experiments the sections were subjected to consecutive incubations with both GABA and Glu antisera. These two antisera label two morphologically distinct types of boutons in SNr. The GABA antiserum labels boutons with pleomorphic vesicles, and they establish symmetrical synaptic contacts, mainly with dendritic shafts and spines, and occasionally with cell bodies. The Glu antiserum labels boutons with vesicles which are smaller and more uniform with regard to size and shape than those seen in the GABA-labelled boutons. The Glu-labelled boutons are engaged in asymmetrical synaptic contacts mainly with dendritic shafts and more rarely with cell bodies. The number of GABA-labelled boutons in SNr greatly exceeds the number of Glu-labelled ones. In the experimental material a considerable number of boutons in SNr are labelled with WGA-HRP reaction product. Several of these boutons are enriched in Glu-like immunoreactivity (Glu-LI), but not in GABA-LI. It is concluded that the subthalamonigral projection in the cat is likely to use Glu as a transmitter. The findings are briefly discussed with respect to the role played by STN in movement disorders and the involvement of excitatory amino acids in SN for the propagation of epileptic seizures and development of neurotoxicity.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验