Suppr超能文献

受体端结合结构域相互作用确保了转运RNA的正确氨酰化。

Acceptor end binding domain interactions ensure correct aminoacylation of transfer RNA.

作者信息

Weygand-Durasević I, Schwob E, Söll D

机构信息

Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511.

出版信息

Proc Natl Acad Sci U S A. 1993 Mar 1;90(5):2010-4. doi: 10.1073/pnas.90.5.2010.

Abstract

The recognition of the acceptor stem of tRNA(Gln) is an important element ensuring the accuracy of aminoacylation by Escherichia coli glutaminyl-tRNA synthetase (GlnRS; EC 6.1.1.18). On the basis of known mutations and the crystal structure of the tRNA(Gln).GlnRS complex, we mutagenized at saturation two motifs in the acceptor end binding domain of GlnRS. Mutants with lowered tRNA specificity were then selected in vivo by suppression of a glutamine-specific amber mutation (lacZ1000) with an amber suppressor tRNA derived from tRNA(1Ser). The mischarging GlnRS mutants obtained in this way retain the ability to charge tRNA(Gln), but in addition, they misacylate a number of noncognate amber suppressor tRNAs. The critical residues responsible for specificity are Arg-130 and Glu-131, located in a part of GlnRS that binds the acceptor stem of tRNA(Gln). On the basis of the spectrum of tRNAs capable of being misacylated by such mutants we propose that, in addition to taking part in productive interactions, the acceptor end binding domain contributes to recognition specificity by rejecting noncognate tRNAs through negative interactions. Analysis of the catalytic properties of one of the mischarging enzymes, GlnRS100 (Arg-130-->Pro, Glu-131-->Asp), indicates that, while the kinetic parameters of the mutant enzyme are not dramatically changed, it binds noncognate tRNA(Glu) more stably than the wild-type enzyme does (Kd is 1/8 that of the wild type). Thus, the stability of the noncognate complex may be the basis for mischarging in vivo.

摘要

识别tRNA(Gln)的受体茎是确保大肠杆菌谷氨酰胺-tRNA合成酶(GlnRS;EC 6.1.1.18)进行氨酰化准确性的一个重要因素。基于已知的突变和tRNA(Gln).GlnRS复合物的晶体结构,我们对GlnRS受体端结合结构域中的两个基序进行了饱和诱变。然后通过用源自tRNA(1Ser)的琥珀抑制tRNA抑制谷氨酰胺特异性琥珀突变(lacZ1000),在体内筛选出tRNA特异性降低的突变体。以这种方式获得的错误氨酰化GlnRS突变体保留了对tRNA(Gln)进行氨酰化的能力,但此外,它们还会错误地将一些非同源琥珀抑制tRNA氨酰化。负责特异性的关键残基是位于GlnRS中与tRNA(Gln)受体茎结合部分的Arg-130和Glu-131。基于能够被此类突变体错误氨酰化的tRNA谱,我们提出,除了参与有效的相互作用外,受体端结合结构域还通过负向相互作用排斥非同源tRNA,从而有助于识别特异性。对其中一种错误氨酰化酶GlnRS100(Arg-130→Pro,Glu-131→Asp)的催化特性分析表明,虽然突变酶的动力学参数没有显著变化,但它比野生型酶更稳定地结合非同源tRNA(Glu)(Kd是野生型的1/8)。因此,非同源复合物的稳定性可能是体内错误氨酰化的基础。

相似文献

引用本文的文献

8
Macromolecular recognition through electrostatic repulsion.通过静电排斥实现的大分子识别。
EMBO J. 1995 Jun 15;14(12):2945-50. doi: 10.1002/j.1460-2075.1995.tb07294.x.

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验