Busconi L, Michel T
Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115.
J Biol Chem. 1993 Apr 25;268(12):8410-3.
Nitric oxide synthases in diverse mammalian tissues catalyze the oxidation of L-arginine to L-citrulline plus nitric oxide (NO). In the vascular endothelium, synthesis of NO yields a labile intercellular messenger molecule with potent biological activities, including vascular smooth muscle relaxation. We have recently documented that the endothelial cell NO synthase (EC-NOS) constitutes a genetically distinct tissue-specific enzyme isoform. In further contrast to the soluble NO synthases found in neural tissues and in macrophages, the endothelial enzyme is associated primarily with the particulate fraction. Analysis of molecular clones for the endothelial NO synthase reveals no obvious transmembrane-spanning region, but a consensus motif for N-terminal myristoylation was identified; such a consensus sequence is not evident in the primary sequence of the soluble macrophage and neural NO synthases. We performed oligonucleotide-directed mutagenesis of the myristoylation consensus sequence in the endothelial NO synthase cDNA, and studied the pattern of expression of the wild-type and mutant EC-NOS cDNAs in transient transfection experiments in COS-7 cells. The subcellular localization of heterologous endothelial NO synthase was determined using analyses of enzyme activity as well as immunoprecipitation of biosynthetically labeled NO synthase with a highly specific antipeptide antibody. Expression of the wild-type endothelial NO synthase cDNA in COS-7 cells results in targeting of both enzyme activity and NO synthase immunoreactivity primarily to the particular fraction. By contrast, transient expression of the myristoylation- mutant cDNA in COS-7 cells yields NO synthase enzyme activity and immunoreactivity associated exclusively with the cytosol fraction. Following biosynthetic labeling with [3H]myristate, the NO synthase can be specifically immunoprecipitated from the particulate fraction in endothelial and in COS-7 cells transfected with the wild-type cDNA, but not in cells transfected with the myristoylation- mutant EC-NOS cDNA. N-terminal myristoylation of the endothelial NO synthase may provide a potential point of regulation of the biological functions of endothelium-derived NO in situ.
多种哺乳动物组织中的一氧化氮合酶催化L-精氨酸氧化生成L-瓜氨酸和一氧化氮(NO)。在血管内皮中,NO的合成产生一种不稳定的细胞间信使分子,具有强大的生物活性,包括使血管平滑肌舒张。我们最近证实,内皮细胞一氧化氮合酶(EC-NOS)是一种基因上独特的组织特异性酶同工型。与神经组织和巨噬细胞中发现的可溶性一氧化氮合酶进一步不同的是,内皮酶主要与微粒部分相关。对内皮一氧化氮合酶分子克隆的分析未发现明显的跨膜区域,但鉴定出了一个N端肉豆蔻酰化的共有基序;这种共有序列在可溶性巨噬细胞和神经一氧化氮合酶的一级序列中不明显。我们对内皮一氧化氮合酶cDNA中的肉豆蔻酰化共有序列进行了寡核苷酸定向诱变,并在COS-7细胞的瞬时转染实验中研究了野生型和突变型EC-NOS cDNA的表达模式。使用酶活性分析以及用高度特异性抗肽抗体对生物合成标记的一氧化氮合酶进行免疫沉淀,来确定异源内皮一氧化氮合酶的亚细胞定位。野生型内皮一氧化氮合酶cDNA在COS-7细胞中的表达导致酶活性和一氧化氮合酶免疫反应性主要靶向微粒部分。相比之下,肉豆蔻酰化突变cDNA在COS-7细胞中的瞬时表达产生的一氧化氮合酶酶活性和免疫反应性仅与胞质部分相关。在用[3H]肉豆蔻酸进行生物合成标记后,可以从内皮细胞和用野生型cDNA转染的COS-7细胞的微粒部分特异性免疫沉淀一氧化氮合酶,但在用肉豆蔻酰化突变型EC-NOS cDNA转染的细胞中则不能。内皮一氧化氮合酶的N端肉豆蔻酰化可能为原位调节内皮源性NO的生物学功能提供一个潜在的调控点。