Calligaro D O, O'Malley P J, Monn J A
Department of Biochemical Toxicology, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana.
J Neurochem. 1993 Jun;60(6):2297-303. doi: 10.1111/j.1471-4159.1993.tb03517.x.
Micromolar concentrations of beta-amyloid (25-35) or substance P stimulated [3H]MK-801 binding in the presence of low concentrations of glutamate (1 microM) and glycine (0.02 microM). Unlike polyamines spermine and spermidine, neither beta-amyloid (25-35) nor substance P increased [3H]MK-801 binding in the presence of maximally stimulating concentrations of glutamate and glycine. 5,7-Dichloro-kynurenic acid, CGS-19755, and arcaine completely inhibited the stimulated [3H]MK-801 binding. There was an apparent decreased potency of the [3H]MK-801 binding inhibition curve for 5,7-dichlorokynurenic acid, but not CGS-19755 or arcaine, in the presence of either beta-amyloid (25-35) or substance P. The compounds do not appear to act through the strychnine-insensitive glycine binding site because neither beta-amyloid (25-35) nor substance P displaced [3H]glycine binding. Full-length beta-amyloid (1-40), up to 10 microM, did not stimulate [3H]MK-801 binding. Concentrations > 10 microM could not be tested because they formed large aggregate precipitates in the assay. The data indicate that beta-amyloid (25-35) or substance P does not stimulate [3H]MK-801 binding at either the N-methyl-D-aspartate, glycine, or polyamine binding sites. Furthermore, the nonpeptide substance P receptor (NK1) antagonist, CP-96,345, did not block beta-amyloid (25-35)- or substance P-stimulated [3H]MK-801 binding. Therefore, the effect is not due to an interaction between the substance P receptors and the N-methyl-D-aspartate receptor-operated ionophore. Finally, if these observations can be verified using single-channel recording techniques, they may have implications in the pattern of selective neuronal loss observed in patients with neurodegenerative processes such as Alzheimer's, Parkinson's, and Huntington's diseases.
在低浓度谷氨酸(1微摩尔)和甘氨酸(0.02微摩尔)存在的情况下,微摩尔浓度的β-淀粉样蛋白(25 - 35)或P物质刺激了[3H]MK - 801结合。与多胺精胺和亚精胺不同,在谷氨酸和甘氨酸的最大刺激浓度存在时,β-淀粉样蛋白(25 - 35)和P物质均未增加[3H]MK - 801结合。5,7 - 二氯犬尿氨酸、CGS - 19755和鹅肌肽完全抑制了刺激后的[3H]MK - 801结合。在存在β-淀粉样蛋白(25 - 35)或P物质的情况下,5,7 - 二氯犬尿氨酸的[3H]MK - 801结合抑制曲线的效力明显降低,但CGS - 19755或鹅肌肽则不然。这些化合物似乎不是通过对士的宁不敏感的甘氨酸结合位点起作用,因为β-淀粉样蛋白(25 - 35)和P物质均未取代[3H]甘氨酸结合。全长β-淀粉样蛋白(1 - 40),浓度高达10微摩尔,未刺激[3H]MK - 801结合。浓度>10微摩尔无法进行测试,因为它们在测定中形成了大的聚集沉淀。数据表明,β-淀粉样蛋白(25 - 35)或P物质在N - 甲基 - D - 天冬氨酸、甘氨酸或多胺结合位点均未刺激[3H]MK - 801结合。此外,非肽类P物质受体(NK1)拮抗剂CP - 96,345并未阻断β-淀粉样蛋白(25 - 35)或P物质刺激的[3H]MK - 801结合。因此,这种效应不是由于P物质受体与N - 甲基 - D - 天冬氨酸受体操纵的离子通道之间的相互作用所致。最后,如果这些观察结果能够使用单通道记录技术得到验证,它们可能对在诸如阿尔茨海默病、帕金森病和亨廷顿病等神经退行性疾病患者中观察到的选择性神经元丢失模式具有启示意义。