Suppr超能文献

A plasmid system to monitor gene conversion and reciprocal recombination in vitro.

作者信息

Oppliger T, Würgler F E, Sengstag C

机构信息

Institute of Toxicology, Swiss Federal Institute of Technology, Schwerzenbach.

出版信息

Mutat Res. 1993 Jun;291(3):181-92. doi: 10.1016/0165-1161(93)90158-v.

Abstract

A plasmid system allowing for the detection of recombinagenic activities in cell-free extracts is described. Two truncated alleles of the bacterial neomycin resistance gene (neo), differing from each other at a polymorphic restriction site, were constructed. Recombinations involving both alleles mediated by Drosophila embryo nuclear protein extracts or Drosophila larva whole cell protein extracts were selected by their ability to confer kanamycin resistance to E. coli. Restriction analysis of plasmids recovered from E. coli transformants allowed the monitoring of the two molecular mechanisms which can lead to functional neo genes, gene conversion and reciprocal recombination. A dose dependent increase in the recombination frequency with increasing amounts of cell extract was observed. Recombination was further increased by linearizing one of the two substrate plasmids. The Drosophila cell extracts catalyzed recombination in vitro since after incubation a recombination product could be identified by polymerase chain reaction (PCR) technology. The recombination was absolutely dependent on the presence of an active cell extract, since no diagnostic PCR product was detected in a reaction where extract was omitted. Analysis of a representative number of recombinant plasmids by restriction analysis revealed that in the absence of an exogenous recombinational system less than 2% of kanamycin resistant recombinant plasmids occurred by gene conversion upon transformation into E. coli. In contrast, recombinants exhibiting restriction patterns diagnostic for gene conversion were observed at frequencies between 5.1% and 9.8% after incubation with Drosophila larva cell extracts. These results strongly argued that gene conversion is a prominent mechanism of recombination in Drosophila mitotic cells.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验