Suppr超能文献

使用合成肽构建体作为免疫原诱导针对乳腺癌相关粘蛋白的抗体反应。

Induction of antibody responses to breast carcinoma associated mucins using synthetic peptide constructs as immunogens.

作者信息

Denton G, Sekowski M, Price M R

机构信息

Cancer Research Laboratory, University of Nottingham, UK.

出版信息

Cancer Lett. 1993 Jul 16;70(3):143-50. doi: 10.1016/0304-3835(93)90224-w.

Abstract

A strategy for directing and enhancing B cell immune responses against synthetic peptide determinants has been developed in order to produce antibodies specifically against protein epitopes of clinical relevance. A peptide sequence based upon the MUC-1 mucin protein core was selected for this purpose since anti-MUC-1 antibodies have proven diagnostic application and therapeutic potential in human breast and ovarian cancer. Peptide constructs were synthesised co-linearly linking the immunodominant B cell determinant region, PDTRPAP, in the protein core of the MUC-1 mucin, to sequence 111-120 of influenza haemagglutinin A/X-31, a determinant recognised by T helper cells through association with MHC class II molecules. Induction of anti-MUC-1 antibodies to the B cell determinant region by immunisation with peptide was shown to be dependent upon both the presence and the position of the T cell determinant. In addition, haplotype mismatching with respect to the T cell determinant resulted in a significant lowering of the anti-MUC-1 antibody response in peptide construct immunised mice. These findings are relevant to the design of immunogens to produce antibodies against peptide epitopes of tumour associated proteins and glycoproteins.

摘要

为了产生针对具有临床相关性的蛋白质表位的特异性抗体,已经开发出一种指导和增强针对合成肽决定簇的B细胞免疫反应的策略。基于MUC-1粘蛋白核心的肽序列被选用于此目的,因为抗MUC-1抗体已在人类乳腺癌和卵巢癌中被证明具有诊断应用价值和治疗潜力。合成肽构建体,将MUC-1粘蛋白蛋白质核心中的免疫显性B细胞决定簇区域PDTRPAP与甲型流感病毒血凝素A/X-31的111-120序列共线性连接,该决定簇通过与MHC II类分子结合而被辅助性T细胞识别。通过用肽免疫诱导针对B细胞决定簇区域的抗MUC-1抗体,结果表明这取决于T细胞决定簇的存在和位置。此外,在肽构建体免疫的小鼠中,关于T细胞决定簇的单倍型不匹配导致抗MUC-1抗体反应显著降低。这些发现与设计免疫原以产生针对肿瘤相关蛋白质和糖蛋白的肽表位的抗体有关。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验