Ignarro L J, Fukuto J M, Griscavage J M, Rogers N E, Byrns R E
Department of Pharmacology, University of California, School of Medicine, Los Angeles 90024.
Proc Natl Acad Sci U S A. 1993 Sep 1;90(17):8103-7. doi: 10.1073/pnas.90.17.8103.
Nitric oxide (NO) in oxygen-containing aqueous solution has a short half-life that is often attributed to a rapid oxidation to both NO2- and NO3-. The chemical fate of NO in aqueous solution is often assumed to be the same as that in air, where NO is oxidized to NO2 followed by dimerization to N2O4. Water then reacts with N2O4 to form both NO2- and NO3-. We report here that NO in aqueous solution containing oxygen is oxidized primarily to NO2- with little or no formation of NO3-. In the presence of oxyhemoglobin or oxymyoglobin, however, NO and NO2- were oxidized completely to NO3-. Methemoglobin was inactive in this regard. The unpurified cytosolic fraction from rat cerebellum, which contains constitutive NO synthase activity, catalyzed the conversion of L-arginine primarily to NO3- (NO2-/NO3- ratio = 0.25). After chromatography on DEAE-Sephacel or affinity chromatography using 2',5'-ADP-Sepharose 4B, active fractions containing NO synthase activity catalyzed the conversion of L-arginine primarily to NO2- (NO2-/NO3- ratio = 5.6) or only to NO2-, respectively. Unpurified cytosol from activated rat alveolar macrophages catalyzed the conversion of L-arginine to NO2- without formation of NO3-. Addition of 30 microM oxyhemoglobin to all enzyme reaction mixtures resulted in the formation primarily of NO3- (NO2-/NO3- ratio = 0.09 to 0.20). Cyanide ion, which displaces NO2- from its binding sites on oxyhemoglobin, inhibited the formation of NO3-, thereby allowing NO2- to accumulate. These observations indicate clearly that the primary decomposition product of NO in aerobic aqueous solution is NO2- and that further oxidation to NO3- requires the presence of additional oxidizing species such as oxyhemoproteins.
一氧化氮(NO)在含氧水溶液中的半衰期很短,这通常归因于它迅速氧化为亚硝酸根离子(NO2-)和硝酸根离子(NO3-)。人们常常认为NO在水溶液中的化学归宿与在空气中相同,在空气中NO先被氧化为二氧化氮(NO2),然后二聚化为四氧化二氮(N2O4)。接着水与N2O4反应生成NO2-和NO3-。我们在此报告,在含氧水溶液中,NO主要被氧化为NO2-,几乎不生成或根本不生成NO3-。然而,在存在氧合血红蛋白或氧合肌红蛋白的情况下,NO和NO2-会被完全氧化为NO3-。高铁血红蛋白在这方面没有活性。来自大鼠小脑的未纯化胞质部分含有组成型一氧化氮合酶活性,它催化L-精氨酸主要转化为NO3-(NO2-/NO3-比值 = 0.25)。在使用二乙氨基乙基葡聚糖凝胶(DEAE-Sephacel)进行层析或使用2',5'-二磷酸腺苷琼脂糖凝胶4B(2',5'-ADP-Sepharose 4B)进行亲和层析后,含有一氧化氮合酶活性的活性部分分别催化L-精氨酸主要转化为NO2-(NO2-/NO3-比值 = 5.6)或仅转化为NO2-。来自活化大鼠肺泡巨噬细胞的未纯化胞质催化L-精氨酸转化为NO2-,不生成NO3-。向所有酶反应混合物中添加30微摩尔的氧合血红蛋白主要导致生成NO3-(NO2-/NO3-比值 = 0.09至0.20)。氰离子会将NO2-从其在氧合血红蛋白上的结合位点置换下来,它抑制了NO3-的生成,从而使NO2-得以积累。这些观察结果清楚地表明,在有氧水溶液中NO的主要分解产物是NO2-,而进一步氧化为NO3-需要存在额外的氧化物质,如氧合血红蛋白。