Suppr超能文献

Involvement of calcium and L-type channels in nicotine-induced antinociception.

作者信息

Damaj M I, Welch S P, Martin B R

机构信息

Department of Pharmacology and Toxicology, Medical College of Virginia, Virginia Commonwealth University, Richmond.

出版信息

J Pharmacol Exp Ther. 1993 Sep;266(3):1330-8.

PMID:7690401
Abstract

The nature of the signaling process activated by neuronal nicotinic receptors has not been fully defined; however, several recent studies have implicated the involvement of calcium ion fluxes in the response to nicotine on a cellular level. Alteration of nicotine-induced antinociception in mice after systemic administration was therefore investigated in the presence of several drugs that increase intracellular calcium. Calcium, (+/-)-BAYK 8644, thapsigargin, glyburide and A23187 administered intrathecally (i.t.) were found to enhance nicotine-induced antinociception by shifting its dose-response curve to the left. Conversely, i.t. administration of agents which decrease intracellular calcium, such as EGTA and alpha-calcitonin gene-related peptide, blocked nicotine-induced antinociception. These findings support a role for spinal intracellular calcium in the pharmacological effects of nicotine. Additionally, blockade of antinociception by nimodipine and nifedipine indicates that a L-type calcium channel is involved in nicotine's effect. However, nicotine did not compete for [3H] nitrendipine binding. Intrathecal administration of mecamylamine, a nicotinic antagonist, resulted in a blockade of antinociception produced by the i.t. injection of thapsigargin, A23187, calcium and (+/-)-BAYK 8644. The mechanism of mecamylamine's antagonism of nicotine is uncertain. However, these results suggest that mecamylamine blocks the effects of drugs which increase intracellular calcium by either a modulation of intracellular calcium-dependent mechanisms or a blockade of calcium channels. Thus, mecamylamine could modulate a calcium signaling process secondary to receptor activation resulting in blockade of antinociception produced by diverse agents.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验