Suppr超能文献

Morphological specification of trigeminal neurites depends on target fields.

作者信息

Erzurumlu R S, McKay R D, Jhaveri S

机构信息

Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge 02139.

出版信息

Brain Res Dev Brain Res. 1994 Nov 18;83(1):132-7. doi: 10.1016/0165-3806(94)90187-2.

Abstract

Primary sensory neurons bridge the sensory periphery to the central nervous system (CNS) via their two axonal processes. The morphological patterning of the terminals of each process in its respective target is unique. Whether the differences between peripheral and central axons result from an intrinsic developmental program of the ganglion cell body, or from target-derived signals is not known. To explore this issue, we have used an explant coculture system in which embryonic (E15) trigeminal ganglion explants were placed between a vibrissa pad and a brainstem explant, but the explants were rotated 180 degrees relative to their normal orientation. In other experiments, individual ganglia were placed between two vibrissa pad explants or between two slices taken through the brainstem. The cultures were fixed after several days and ganglion cell processes were labeled with the lipophilic tracer DiI. Results of the ganglion rotation experiments suggest that trigeminal axons which would be directed centrally in vivo can regenerate into peripheral targets, and peripheral axons can grow into CNS tissue. Similarly, in cocultures with two peripheral or two central targets, both processes of trigeminal ganglion cells can simultaneously invade vibrissa pad explants or project into brainstem slices. Moreover, in all cocultures the differentiation of each set of processes is specific to the target innervated by it. These results show that the axons of embryonic sensory neurons are not selective in their choice of targets, and that their morphological patterning is dictated by target-derived signals.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验