Hohn H P, Steih U, Denker H W
Institute für Anatomie, Universitätsklinikum Essen, Germany.
In Vitro Cell Dev Biol Anim. 1995 Jan;31(1):37-44. doi: 10.1007/BF02631336.
Gels of glyoxyl agarose (GA) are evaluated as a novel flexible substrate for cell culture with physical properties comparable to extracellular matrix (ECM) gels. We show here that cells adhere well to pure GA gels; in addition, specific interactions involving matrix receptors can be studied when individual matrix molecules are bound to the gel covalently. When cells are grown on such substrates, morphology is comparable to that observed on "natural" matrix gels (reconstituted gels of collagen type I or of Matrigel): rather than being flattened as in monolayer cultures on tissue culture plastic the cells assume a rounded morphology and tend to form tissue-like aggregates. The effects of the artificial matrix gels are discussed in the context of previous publications on cell interactions with the extracellular matrix, suggesting that in addition to specific recognition of matrix molecules the physical properties of ECM by themselves can be decisive for cell differentiation. We conclude that gels of glyoxyl agarose a) provide a useful model to mimic the physical properties of matrix gels without the presence of specific adhesion factors; b) may be useful as a general, non-specific ECM allowing cells to be cultured in vitro under conditions favorable for differentiation; and c) allow to design a variety of "synthetic" ECM models composed of a chemically defined gel matrix, which can be supplemented with covalently bound molecules to be recognized by cell surface receptors.