Suppr超能文献

Hematopoietic-promoting activity of the murine stromal cell line MS-5 is not related to the expression of the major hematopoietic cytokines.

作者信息

Kobari L, Dubart A, Le Pesteur F, Vainchenker W, Sainteny F

机构信息

INSERM U362, Institut Gustave-Roussy, Villejuif, France.

出版信息

J Cell Physiol. 1995 May;163(2):295-304. doi: 10.1002/jcp.1041630210.

Abstract

As an approach for characterizing the molecules involved in the proliferation and differentiation of hematopoietic stem cells we have compared the ability of four murine stromal cell lines, MS-5, MS-K, both derived from Dexter cultures, BMS1 and BMS2 both derived from Whitlock-Witte cultures, to sustain murine long term hematopoiesis and to express the major hematopoietic cytokine genes. As opposed to the three other cell lines, MS-5 supports the maintenance of stem cells for up to 4-5 weeks. However, reconstituting stem cell output was reduced while clonogenic cell (day 12 and day 8 spleen colony-forming units, granulo-macrophagic, and erythroid progenitor cells) output was markedly increased. This hematopoietic-promoting activity is at least in part mediated by soluble molecules since medium conditioned with MS-5 cells was able to partially complement the nonsupportive cell line BMS1. The comparative study of the cytokine gene expression in MS-5 and in the nonsupportive cell lines included Northern blot and reverse transcriptase-polymerase chain reaction analysis of messenger RNA for interleukin-1, -3, -6, granulo-macrophage-colony-stimulating factor (GM-CSF), granulocyte-CSF, macrophage-CSF, stem cell factor, transforming growth factor-beta, tumor necrosis factor-alpha, macrophage inflammatory protein-1 alpha, and leukemia inhibitory factor. None of these molecules or their association were found to clearly confer to the MS-5 cell line its hematopoietic-promoting activity raising the possibility that uncharacterized molecule(s) would be involved in the proliferation and differentiation of stem cells.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验