Chapeau-Blondeau F
Institut de Biologie Théorique, Université d'Angers, France.
Acta Biotheor. 1995 Jun;43(1-2):155-67. doi: 10.1007/BF00709440.
This paper is concerned with the modeling of neural systems regarded as information processing entities. I investigate the various dynamic regimes that are accessible in neural networks considered as nonlinear adaptive dynamic systems. The possibilities of obtaining steady, oscillatory or chaotic regimes are illustrated with different neural network models. Some aspects of the dependence of the dynamic regimes upon the synaptic couplings are examined. I emphasize the role that the various regimes may play to support information processing abilities. I present an example where controlled transient evolutions in a neural network, are used to model the regulation of motor activities by the cerebellar cortex.
本文关注被视为信息处理实体的神经系统建模。我研究了被视为非线性自适应动态系统的神经网络中可达到的各种动态状态。通过不同的神经网络模型说明了获得稳定、振荡或混沌状态的可能性。研究了动态状态对突触耦合依赖性的一些方面。我强调了各种状态在支持信息处理能力方面可能发挥的作用。我给出了一个例子,其中神经网络中的受控瞬态演化被用于模拟小脑皮质对运动活动的调节。