Ouporov I V, Leontis N B
Chemistry Department, Bowling Green State University, Ohio 43403-0213.
Biophys J. 1995 Jan;68(1):266-74. doi: 10.1016/S0006-3495(95)80183-9.
We have refined the structure of the DNA Three-Way Junction complex, TWJ-TC, described in the companion paper by quantitative analysis of two 2D NOESY spectra (mixing times 60 and 200 ms) obtained in D2O solution. NOESY crosspeak intensities extracted from these spectra were used in two kinds of refinement procedure: 1) distance-restrained energy minimization (EM) and molecular dynamics (MD) and 2) full relaxation matrix back calculation refinement. The global geometry of the refined model is very similar to that of a published, preliminary model (Leontis, 1993). Two of the helical arms of the junction are stacked. These are Helix 1, defined by basepairs S1-G1/S3-C12 through S1-C5/S3-G8 and Helix 2, which comprises basepairs S1-C6/S2-G5 through S1-G10/S2-G1. The third helical arm (Helix 3), comprised of basepairs S2-C6/S3-G5 through S2-C10/S3-G1 extends almost perpendicularly from the axis defined by Helices 1 and 2. The bases S1-C5 and S1-C6 of Strand 1 are continuously stacked across the junction region. The conformation of this strand is close to that of B-form DNA along its entire length, including the S1-C5 to S1-C6 dinucleotide step at the junction. The two unpaired bases S3-T6 and S3-C7 lie outside of the junction along the minor groove of Helix 1 and largely exposed to solvent. Analysis of the refined structure reveals that the glycosidic bond of S3-T6 exists in the syn conformation, allowing the methyl group of this residue to contact the hydrophobic surface of the minor groove of Helix 1, at S3-G11. The helical parameters of the three helical arms of the structure exhibit only weak deviations from typical values for right-handed B-form DNA. Unusual dihedral angles are only observed for the sugarphosphate backbone joining the "hinge" residues, S2-G5 and S2-C6, and S3-G5 through S3-G8. The glycosidic bond of S3-G8also lies within the syn range, allowing favorable Watson-Crick base-pairing interactions with Si -C5. The stability of this structure was checked in 39 ps molecular dynamic simulation at 330 K in water. The structure of TWJ-TC retained the geometrical features mentioned above at the end of the simulation period. The final R(1/6)-factor of the refined structure is 5%.
我们通过对在D2O溶液中获得的两个二维NOESY谱(混合时间分别为60和200毫秒)进行定量分析,优化了配套论文中描述的DNA三向连接复合物TWJ-TC的结构。从这些谱中提取的NOESY交叉峰强度被用于两种优化程序:1)距离约束能量最小化(EM)和分子动力学(MD);2)全弛豫矩阵反向计算优化。优化模型的整体几何形状与已发表的初步模型(Leontis,1993)非常相似。连接点的两条螺旋臂相互堆叠。这两条螺旋臂分别是:由碱基对S1-G1/S3-C12至S1-C5/S3-G8定义的螺旋1,以及由碱基对S1-C6/S2-G5至S1-G10/S2-G1组成的螺旋2。第三条螺旋臂(螺旋3)由碱基对S2-C6/S3-G5至S2-C10/S3-G1组成,几乎垂直于由螺旋1和螺旋2所定义的轴延伸。链1的碱基S1-C5和S1-C6在连接区域连续堆叠。这条链的构象在其整个长度上都接近B型DNA,包括连接点处的S1-C5至S1-C6二核苷酸步。两个未配对的碱基S3-T6和S3-C7沿着螺旋1的小沟位于连接点之外,并且大部分暴露于溶剂中。对优化结构的分析表明,S3-T6的糖苷键以顺式构象存在,使得该残基的甲基能够在S3-G11处与螺旋1小沟的疏水表面接触。该结构的三条螺旋臂的螺旋参数与右手B型DNA的典型值仅存在微弱偏差。仅在连接“铰链”残基S2-G5和S2-C6以及S3-G5至S3-G8的糖磷酸主链处观察到异常的二面角。S3-G8的糖苷键也处于顺式范围内,使得其能够与Si -C5形成有利的沃森-克里克碱基配对相互作用。在330K的水中进行的39皮秒分子动力学模拟中检查了该结构的稳定性。在模拟期结束时,TWJ-TC的结构保留了上述几何特征。优化结构的最终R(1/6)因子为5%。