Suppr超能文献

Release of endogenous catecholamines from the striatum and bed nucleus of stria terminalis evoked by potassium and N-methyl-D-aspartate: in vitro microdialysis studies.

作者信息

Aliaga E, Bustos G, Gysling K

机构信息

Department of Cell and Molecular Biology, Faculty of Biological Sciences, Catholic University of Chile, Santiago.

出版信息

J Neurosci Res. 1995 Jan 1;40(1):89-98. doi: 10.1002/jnr.490400110.

Abstract

Induced release of endogenous dopamine and noradrenaline from coronal slices containing the striatum and the bed nucleus of the stria terminalis, respectively, was studied by means of in vitro microdialysis. A Ca(+2)-dependent and reserpine-sensitive K(+)-induced release of catecholamines was detected in both nuclei. We confirmed that N-methyl-D-aspartate (2.5 and 5.0 mM in the dialysis perfusion solution) induces the release of dopamine from the striatum, and this effect was blocked by prior dialysis perfusion with 500 microM MK-801, a noncompetitive N-methyl-D-aspartate receptor antagonist. Infusion of N-methyl-D-aspartate (1-10 mM) or glutamate through the dialysis probe did not produce any detectable modification in the extracellular levels of noradrenaline in the bed nucleus of the stria terminalis. In addition, perfusion with D-serine (100 microM) alone or in the presence of desipramine (10 microM), resulted in a slight increase in extracellular noradrenaline in the bed nucleus of the stria terminalis. However, N-methyl-D-aspartate in the presence of D-serine and desipramine produced a marked increase in extracellular noradrenaline from the bed nucleus of the stria terminalis. These results indicate that N-methyl-D-aspartate receptors might regulate the release of noradrenaline from the bed nucleus of the stria terminalis as is the case of dopamine release in the striatum. The in vitro microdialysis seems to be a suitable complement to the in vivo microdialysis for the study of catecholamine release in discrete regions of the central nervous system and its local regulation by excitatory amino acid receptors.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验