Suppr超能文献

一种基于微分拓扑的计算机视觉形状表示法。

A shape representation for computer vision based on differential topology.

作者信息

Blicher A P

出版信息

Biosystems. 1995;34(1-3):197-224. doi: 10.1016/0303-2647(94)01447-f.

Abstract

We describe a shape representation for use in computer vision, after a brief review of shape representation and object recognition in general. Our shape representation is based on graph structures derived from level sets whose characteristics are understood from differential topology, particularly singularity theory. This leads to a representation which is both stable and whose changes under deformation are simple. The latter allows smoothing in the representation domain ('symbolic smoothing'), which in turn can be used for coarse-to-fine strategies, or as a discrete analog of scale space. Essentially the same representation applies to an object embedded in 3-dimensional space as to one in the plane, and likewise for a 3D object and its silhouette. We suggest how this can be used for recognition.

摘要

在对形状表示和一般目标识别进行简要回顾之后,我们描述了一种用于计算机视觉的形状表示方法。我们的形状表示基于从水平集导出的图结构,其特性可从微分拓扑学,特别是奇点理论中理解。这导致了一种既稳定且在变形下变化又简单的表示。后者允许在表示域中进行平滑处理(“符号平滑”),这反过来又可用于从粗到细的策略,或作为尺度空间的离散模拟。本质上相同的表示适用于嵌入三维空间的物体,就如同适用于平面中的物体一样,对于三维物体及其轮廓也是如此。我们提出了如何将其用于识别。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验