Suppr超能文献

离体心脏缺氧时腺苷的生成:肾上腺素能阻断的作用

Adenosine formation during hypoxia in isolated hearts: effect of adrenergic blockade.

作者信息

Gorman M W, He M X, Sparks H V

机构信息

Department of Physiology, Michigan State University, East Lansing 48823.

出版信息

J Mol Cell Cardiol. 1994 Dec;26(12):1613-23. doi: 10.1006/jmcc.1994.1181.

Abstract

Adrenergic receptor blockade has been reported to decrease cardiac adenosine formation and release during hypoxia. We wished to determine whether this occurs by an improvement in the energy supply/demand ratio. Isolated guinea pig hearts were perfused at a constant pressure of 50 mm Hg. Hypoxia (30% O2) was maintained for 20 min while adenosine release and venous PO2 were measured in the coronary venous effluent. beta-adrenergic blockade with 5 microM atenolol did not change hypoxic adenosine release (Control: 15.6 +/- 2.7, Atenolol: 23.6 +/- 5.7 nmol/g/20 min). Addition of 6 microM phentolamine with atenolol significantly reduced hypoxic adenosine release (4.4 +/- 1.4 nmol/g/20 min, P < 0.05). Atenolol was without hemodynamic effects, but addition of phentolamine reduced left ventricular pressure development, heart rate, and oxygen consumption prior to hypoxia. Atenolol plus phentolamine did not change venous PO2 during hypoxia. Treatment with phenoxybenzamine (1 microM) plus atenolol also reduced adenosine release (7.4 +/- 0.8 nmol/g/20 min). Control experiments and atenolol plus phentolamine experiments were repeated using 31P-NMR to measure high energy phosphates. Adrenergic blockade had no effect on phosphate concentrations during normoxia, but resulted in higher [PCr], lower [P(i)] and higher phosphorylation potentials during hypoxia. Adrenergic blockade also prevented the hypoxia-induced rise in intracellular [H+], [AMP] and [ADP] seen in control hearts. The changes in phosphorylation potential are correlated with similar changes in adenosine release in adrenergically intact hearts. We conclude that the primary effect of adrenergic blockade during hypoxia is a reduction in ATP use due to alpha-receptor blockade. This leads to improved high energy phosphate concentrations during hypoxia and a reduction in adenosine formation.

摘要

据报道,肾上腺素能受体阻断可减少缺氧时心脏腺苷的生成和释放。我们希望确定这是否通过改善能量供应/需求比而发生。将离体豚鼠心脏在50 mmHg的恒定压力下灌注。维持缺氧状态(30%氧气)20分钟,同时在冠状静脉流出液中测量腺苷释放和静脉血氧分压。用5 μM阿替洛尔进行β-肾上腺素能阻断并未改变缺氧时的腺苷释放(对照组:15.6±2.7,阿替洛尔组:23.6±5.7 nmol/g/20分钟)。阿替洛尔与6 μM酚妥拉明联合使用可显著降低缺氧时的腺苷释放(4.4±1.4 nmol/g/20分钟,P<0.05)。阿替洛尔无血流动力学效应,但加入酚妥拉明可降低缺氧前左心室压力、心率和耗氧量。阿替洛尔加酚妥拉明在缺氧期间未改变静脉血氧分压。用苯苄胺(1 μM)加阿替洛尔治疗也可降低腺苷释放(7.4±0.8 nmol/g/20分钟)。使用31P-NMR重复对照实验以及阿替洛尔加酚妥拉明实验以测量高能磷酸盐。肾上腺素能阻断在常氧期间对磷酸盐浓度无影响,但在缺氧期间导致更高的磷酸肌酸[PCr]、更低的无机磷[P(i)]和更高的磷酸化电位。肾上腺素能阻断还可防止在对照心脏中观察到的缺氧诱导的细胞内氢离子[H+]、腺苷一磷酸[AMP]和腺苷二磷酸[ADP]升高。在肾上腺素能完整的心脏中,磷酸化电位的变化与腺苷释放的类似变化相关。我们得出结论,缺氧期间肾上腺素能阻断的主要作用是由于α受体阻断而减少ATP的使用。这导致缺氧期间高能磷酸盐浓度升高以及腺苷生成减少。

相似文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验