Suppr超能文献

Direct visualization of a cardiolipin-dependent cytochrome P450scc-induced vesicle aggregation.

作者信息

Schwarz D, Richter W, Krüger V, Chernogolov A, Usanov S, Stier A

机构信息

Max Delbrück Center for Molecular Medicine, Berlin-Buch, Germany.

出版信息

J Struct Biol. 1994 Nov-Dec;113(3):207-15. doi: 10.1006/jsbi.1994.1055.

Abstract

Cytochrome P450scc can be reconstituted successfully into large unilamellar phospholipid vesicles by a combined octylglucoside dialysis/adsorption method. Freeze-fracture electron microscopy was used to analyze the morphology, distribution, and protein topology of the cytochrome P450scc vesicles in dependence on lipid composition. Particles were observed only in close contact to the vesicle surface, probably representing tightly associated cytochrome P450scc at the outer vesicle surface. In cytochrome P450scc vesicles similar in lipid composition to the inner membrane of bovine mitochondria direct evidence by freeze-fracturing was found for a specific cytochrome P450scc-induced aggregation of the vesicles. The vesicle aggregation critically depends on the content of the specific mitochondrial membrane constituent cardiolipin. The aggregation and thus the intervesicular contacts were observed to be inhibited by both addition of anti-cytochrome P450scc IgG and adrenodoxin. Enzymatic reduction of cytochrome P450scc in the liposomal membrane by its electron transfer partners completely indicates an asymmetrical localization in/at the outer side of the bilayer membrane. It is suggested that vesiculation of the inner mitochondrial membrane may be a consequence of the characteristic cardiolipin-dependent cytochrome P450scc membrane topology: the cardiolipin binding, peripheral, non-bilayer-spanning integration as an oligomer in the outer leaflet of the membrane may play a role in the dynamics of formation and dissociation of intramitochondrial vesicles with a functional importance for steroidogenesis.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验