Qasba P K, Balaji P V, Rao V S
Laboratory of Mathematical Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
Glycobiology. 1994 Dec;4(6):805-15. doi: 10.1093/glycob/4.6.805.
The conformation of the heptasaccharide Man-alpha 1,6-(Man-alpha 1,3)(Xyl-beta 1,2)-Man-beta 1,4-GlcNAc2-beta 1,4-(L- Fuc-alpha 1,3)-GlcNAc1, the carbohydrate moiety of Erythrina corallodendron lectin (EcorL), the hexasaccharide Man-alpha 1,6-(Man-alpha 1,3) (GlcNAc-beta 1,4)-Man-beta 1,4-GlcNAc-beta 1,4-GlcNAc and their disaccharide fragments have been studied by molecular dynamics (MD) simulations for 1000 ps with different initial conformations. In the isolated heptasaccharide, the most frequently accessed conformation during MD has a psi value of 180 degrees around Man-alpha 1,6-Man linkage. This conformation is stabilized by the formation of a hydrogen bond between the carbonyl oxygen of GlcNAc2 with the O3/O4 hydroxyls of the alpha 1,6-linked mannose residue. The conformation of the heptasaccharide found in the crystal structure of the EcorL-lactose complex (Shaanan et al., Science, 254, 862, 1991), that has a psi value of approximately 76 degrees around Man-alpha 1,6-Man linkage, is accessed, although less frequently, during MD of the isolated oligosaccharide. The phi, psi, chi = 58 degrees, -134 degrees, -60 degrees conformation around Man-alpha 1,6-Man fragment observed in the crystal structure of the Lathyrus ochrus lectin complexed with a biantennary octasaccharide (Table I in Homans, S.W., Glycobiology, 3, 551, 1993) has also been accessed in the present MD simulations. These psi values for the alpha 1,6-linkage, which are observed in the protein-carbohydrate crystal structures and are accessed in the MD simulations, though occasionally, have not been predicted from NMR studies. Furthermore, these different values of psi lead to significantly different orientations of the alpha 1,6-arm for the same value of chi. This contrasts with the earlier predictions that only different values of chi can bring about significant changes in the orientation of the alpha 1,6-arm. The MD simulations also show that the effects of bisecting GlcNAc or beta 1,2-xylose are very similar on the alpha 1,3-arm and slightly different on the alpha 1,6-arm.
对刺桐凝集素(EcorL)的碳水化合物部分七糖Man-α1,6-(Man-α1,3)(Xyl-β1,2)-Man-β1,4-GlcNAc2-β1,4-(L-Fuc-α1,3)-GlcNAc1、六糖Man-α1,6-(Man-α1,3)(GlcNAc-β1,4)-Man-β1,4-GlcNAc-β1,4-GlcNAc及其二糖片段进行了分子动力学(MD)模拟,模拟时长1000皮秒,初始构象不同。在分离的七糖中,MD过程中最常出现的构象在Man-α1,6-Man键周围的ψ值为180°。这种构象通过GlcNAc2的羰基氧与α1,6-连接的甘露糖残基的O3/O4羟基之间形成氢键而稳定。在EcorL-乳糖复合物的晶体结构中发现的七糖构象(Shaanan等人,《科学》,254, 862, 1991),在Man-α1,6-Man键周围的ψ值约为76°,在分离的寡糖的MD过程中也会出现,不过频率较低。在与双触角八糖复合的山黧豆凝集素的晶体结构中观察到的围绕Man-α1,6-Man片段的φ、ψ、χ = 58°、-134°、-60°构象(Homans, S.W.,《糖生物学》,3, 551, 1993中的表I)在本次MD模拟中也出现了。这些在蛋白质-碳水化合物晶体结构中观察到且在MD模拟中偶尔出现的α1,6-键的ψ值,尚未从核磁共振研究中预测出来。此外,对于相同的χ值,这些不同的ψ值会导致α1,6-臂的取向显著不同。这与早期的预测相反,早期预测认为只有不同的χ值才能使α1,6-臂的取向发生显著变化。MD模拟还表明,平分GlcNAc或β1,2-木糖对α1,3-臂的影响非常相似,对α1,6-臂的影响略有不同。