Gonzy-Tréboul G, Lepesant J A, Deutsch J
Laboratoire de Biologie du Développement, Institut Jacques Monod, Centre National de la Recherche Scientifique (CNRS), Paris, France.
Genes Dev. 1995 May 1;9(9):1137-48. doi: 10.1101/gad.9.9.1137.
Here, we describe the exact replacement of a defective unmarked P element by an enhancer-trap transposon marked by the miniwhite gene and carrying lacZ as a reporter gene. The original defective P element was located in an intron of the Broad-Complex (BRC), a key gene involved in metamorphosis. Replacement events resulted from conversions induced by the P-element transposase from a donor enhancer-trap element located on another chromosome. Six independent conversion events were selected. In all converted chromosomes, the enhancer-trap transposon was in the same orientation as the original P element. From the pattern of X-gal staining observed, lacZ expression likely reflects the regulatory influence of BRC enhancers on the convertant transposon. Reversion to wild type was achieved by excision of the enhancer-trap transposon. The six convertants were analyzed in detail at the nucleotide level. The occurrence of a polymorphism at position 33 of the P-element sequences led us to propose a conversion mechanism involving homologous P sequences for repair. This is in contrast to previously analyzed P-element transposase-induced conversion events and proposed models relying on sequence identity between genomic Drosophila sequences. The lack of any homology requirement other than between P element sequences means that our findings can be easily generalized. Targeting a marked P-element derivative at a precise site without loss or addition of genetic information makes it possible to exploit the hundreds of defective P elements scattered throughout the Drosophila genome by replacing them with engineered P elements, already available.
在此,我们描述了一个缺陷型未标记P元件被一个由miniwhite基因标记并携带lacZ作为报告基因的增强子捕获转座子精确取代的过程。原始的缺陷型P元件位于Broad-Complex(BRC)的一个内含子中,BRC是参与变态发育的关键基因。取代事件是由位于另一条染色体上的供体增强子捕获元件的P元件转座酶诱导的转换所导致的。我们选择了六个独立的转换事件。在所有转换后的染色体中,增强子捕获转座子与原始P元件的方向相同。从观察到的X-gal染色模式来看,lacZ表达可能反映了BRC增强子对转换后的转座子的调控影响。通过切除增强子捕获转座子实现了向野生型的回复。对这六个转换体在核苷酸水平上进行了详细分析。P元件序列第33位出现的多态性使我们提出了一种涉及同源P序列进行修复的转换机制。这与之前分析的P元件转座酶诱导的转换事件以及依赖果蝇基因组序列之间序列同一性的模型形成了对比。除了P元件序列之间,不存在任何其他同源性要求,这意味着我们的发现很容易推广。在不丢失或添加遗传信息的情况下,将一个标记的P元件衍生物靶向到精确位点,使得利用散布在果蝇基因组中的数百个缺陷型P元件成为可能,方法是用现有的工程化P元件替换它们。