Brüschweiler R, Liao X, Wright P E
Laboratorium für Physikalische Chemie, Eidgenössiche Technische Hochschule Zentrum, Zürich, Switzerland.
Science. 1995 May 12;268(5212):886-9. doi: 10.1126/science.7754375.
Structural characterization of biomolecules in solution by nuclear magnetic resonance (NMR) spectroscopy is based primarily on the use of interproton distances derived from homonuclear cross-relaxation experiments. Information about short time-scale dynamics, on the other hand, is obtained from relaxation rates of heteronuclear spin pairs such as 15N-1H. By combining the two types of data and utilizing the dependence of heteronuclear NMR relaxation rates on anisotropic diffusional rotational tumbling, it is possible to obtain structural information about long-range motional correlations between protein domains. This approach was applied to characterize the relative orientations and mobilities of the first three zinc-finger domains of the Xenopus transcription factor TFIIIA in aqueous solution. The data indicate that the motions of the individual zinc-finger domains are highly correlated on time scales shorter than 10 nanoseconds and that the average conformation of the three-finger polypeptide is elongated.
通过核磁共振(NMR)光谱对溶液中的生物分子进行结构表征主要基于使用同核交叉弛豫实验得出的质子间距离。另一方面,关于短时间尺度动力学的信息则是从诸如¹⁵N-¹H等异核自旋对的弛豫速率中获得的。通过结合这两种类型的数据,并利用异核NMR弛豫速率对各向异性扩散旋转翻滚的依赖性,可以获得有关蛋白质结构域之间长程运动相关性的结构信息。该方法被用于表征非洲爪蟾转录因子TFIIIA的前三个锌指结构域在水溶液中的相对取向和迁移率。数据表明,在短于10纳秒的时间尺度上,各个锌指结构域的运动高度相关,并且三指多肽的平均构象是拉长的。