Suppr超能文献

Cocultures of fetal and adult cardiomyocytes yield rhythmically beating rod shaped heart cells from adult rats.

作者信息

Weisensee D, Seeger T, Bittner A, Bereiter-Hahn J, Schoeppe W, Löw-Friedrich I

机构信息

Cinematic Cell Research Group, Johann Wolfgang Goethe University, Frankfurt am Main, Germany.

出版信息

In Vitro Cell Dev Biol Anim. 1995 Mar;31(3):190-5. doi: 10.1007/BF02639433.

Abstract

Different models of isolated cardiomyocytes are generally used for biochemical, biophysical, and pharmacological studies. Fetal cardiomyocytes can be easily cultured for several weeks regaining their ability for rhythmical and synchronous contractions. For investigations, differentiated myocytes derived from adult hearts are closer to the in situ situation. Unfortunately, these cells at best exhibit irregular and asynchronous contractions at very low frequencies. Already 1 d after seeding calcium-tolerant rod-shaped adult cardiomyocytes on a suitable substrate, the differentiated cells begin to dedifferentiate forming a confluent monolayer. After 7-10 d their beating activities are like those of fetal cells. Therefore, we tried to combine the advantages of both cell types to achieve fully differentiated cardiomyocytes, rod-shaped and rhythmically beating, isolated from adult hearts. Using contractile fetal cells as a substrate for the adult cardiomyocytes, freshly seeded differentiated adult myocytes are paced by the contraction frequency of the fetal monolayer. As a consequence, the rod-shaped adult cardiomyocytes reach frequencies of more than 140 cycles/min without external electrical stimulation. This model enables us to study cardiomyocytes in a state very similar to the in situ situation with respect to morphology, integrity, and contractile behavior.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验