Suppr超能文献

使用表面肌电图的非线性滤波对肌肉工作中的静态负荷成分进行量化。

Quantification of the static load component in muscle work using nonlinear filtering of surface EMG.

作者信息

Nieminen H, Hämeenoja S

机构信息

Medical Engineering Laboratory, Technical Research Centre of Finland, Tampere.

出版信息

Ergonomics. 1995 Jun;38(6):1172-83. doi: 10.1080/00140139508925180.

Abstract

Prolonged static strain on the muscles of the neck-shoulder region is believed to be linked to the development of musculoskeletal problems. To quantify the static strain on the basis of EMG, the level as well as the duration of the muscle load should be analysed on temporal basis. In this paper, some methods for the temporal analysis of EMG recordings are proposed with an aim of quantifying the long-term static strain on the muscle. The use of nonlinear median prefilters for decomposing the EMG activity according both to amplitude level and duration of the activity at different levels is proposed. The prefiltering methods were also evaluated using laboratory studies. The main aim of the studies was to compare the estimation errors between EMG and force for different types of prefilters especially when the static load component was analysed. The average estimation error for sequences having a duration longer than 1 s was found to be 8% of MVC in the case of trapezius muscle and 14% of MVC in the case of biceps brachii muscle. Linear relation was found on the basis of linear least squares curve fitting to give the largest correlation coefficients between EMG and force, when the static load component was analysed.

摘要

颈部 - 肩部区域肌肉的长时间静态应变被认为与肌肉骨骼问题的发展有关。为了基于肌电图(EMG)量化静态应变,应在时间基础上分析肌肉负荷的水平和持续时间。本文提出了一些用于EMG记录时间分析的方法,旨在量化肌肉上的长期静态应变。提出使用非线性中值预滤波器根据不同水平的活动幅度水平和持续时间来分解EMG活动。还通过实验室研究对预滤波方法进行了评估。这些研究的主要目的是比较不同类型预滤波器在肌电图和力之间的估计误差,特别是在分析静态负荷分量时。对于持续时间超过1秒的序列,发现斜方肌情况下的平均估计误差为最大自主收缩(MVC)的8%,肱二头肌情况下为MVC的14%。在分析静态负荷分量时,基于线性最小二乘曲线拟合发现线性关系,以给出肌电图和力之间的最大相关系数。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验