Steinbock O, Müller S C
Max-Planck-Institut für molekulare Physiologie, Dortmund, Bundesrepublik Deutschland.
Z Naturforsch C J Biosci. 1995 Mar-Apr;50(3-4):275-81.
Chemotactic cell motion in aggregation patterns of the slime mould Dictyostelium discoideum is analyzed by a computerized cross-correlation method. In this excitable medium the movement of amoebae is selforganized by signals of cAMP that propagate as rotating spirals or expanding concentric circles (target patterns). A vortex-like rotation of cells is found close to the core of spiral waves, with a maximum velocity of 15 microns/min. Cell motion and spiral tip orbiting follow an opposite sense of rotation. The calculation of streamlines of the most probable trajectories reveals the existence of a closed curve (radius approximately 130 microns) corresponding to the boundary of the spiral core. This spatial-limit cycle attracts the amoebae on rotational paths and leads to the formation of a cell-free disk in the centre of the pattern. In contrast, pacemakers of target patterns organize cell movement in a radial, star-shaped motion, leading directly to the formation of central mounds.
通过计算机化互相关方法分析了黏菌盘基网柄菌聚集模式中的趋化细胞运动。在这种可兴奋介质中,变形虫的运动由以旋转螺旋或扩展同心圆(靶标模式)传播的环磷酸腺苷信号自组织。在螺旋波核心附近发现细胞呈涡旋状旋转,最大速度为15微米/分钟。细胞运动和螺旋尖端环绕遵循相反的旋转方向。对最可能轨迹的流线计算揭示了存在一条与螺旋核心边界相对应的封闭曲线(半径约130微米)。这个空间极限环吸引变形虫沿旋转路径运动,并导致在模式中心形成无细胞盘。相比之下,靶标模式的起搏器以径向、星形运动组织细胞运动,直接导致中央丘的形成。