Suppr超能文献

Characterization of protein adducts produced by N-methyldithiocarbamate and N-methyldithiocarbamate esters.

作者信息

Valentine W M, Amarnath V, Amarnath K, Graham D G

机构信息

Department of Pathology, Duke University Medical Center, Durham, North Carolina 27710, USA.

出版信息

Chem Res Toxicol. 1995 Mar;8(2):254-61. doi: 10.1021/tx00044a011.

Abstract

The toxicity of N-methyldithiocarbamate may be mediated through decomposition to more biologically active compounds. Two principal products, CS2 and methyl isothiocyanate, have the potential to interact covalently with macromolecules in biological systems. In this investigation the ability of N-methyldithiocarbamate to generate methyl isothiocyanate and CS2 under physiological conditions resulting in acylation and covalent cross-linking of proteins was examined using 13C NMR and GC/MS. Two N-methyldithiocarbamate esters, S-methyl N-methyldithiocarbamate and (N-acetyl-S-methylthiocarbamoyl)cysteine, were also investigated to evaluate the acylating ability of sulfhydryl conjugates of N-methyldithiocarbamate. The predominant and most stable adduct produced by the free dithiocarbamate and its S-substituted esters was methylthiourea on epsilon-lysyl and N-terminal alpha-amino groups. Derivatization on N-terminal amino groups progressed more rapidly for the dithiocarbamate than for its mercapturate. Methylurea protein adducts were also produced by the dithiocarbamate and its esters, suggesting production of methyl isocyanate in the decomposition of N-methyldithiocarbamate. Covalent cross-linking of beta-lactoglobulin by N-methyldithiocarbamate resulting from its decomposition to CS2 was observed using denaturing polyacrylamide gel electrophoresis. These results demonstrate the ability of a monoalkyldithiocarbamate to acylate protein amino groups and effect covalent cross-linking. These processes represent molecular mechanisms that may contribute to the toxicity of this class of compounds.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验