Suppr超能文献

In vitro contractile and relaxant responses of human resistance placental stem villi arteries of healthy parturients: role of endothelium.

作者信息

Sabry S, Mondon F, Ferré F, Dinh-Xuan A T

机构信息

Laboratoire de Physiologie, CHU Cochin Port-Royal, Université René Descartes, Paris, France.

出版信息

Fundam Clin Pharmacol. 1995;9(1):46-51. doi: 10.1111/j.1472-8206.1995.tb00264.x.

Abstract

As feto-placental vessels in humans are not innervated, regulation of vascular tone in the fetal extracorporeal circulation most likely depends on either circulating hormones or local paracrine mechanisms. However, the latter have not yet been fully investigated. The aim of our study was to characterize vasomotor behaviour of resistance stem villi arteries when challenged with various constrictor and dilator agents, with special emphasis on the physiological importance of endothelium. The latter is poorly characterized in this particular vascular bed in humans. Villous stem arterial rings (internal diameter 182 +/- 6 microns) were isolated under microscopy from term human placentae obtained after cesarean section. The vessels were mounted as ring preparations in an isometric myograph for tension measurements. Endothelium was removed from some of the rings by gentle insertion of a knotted human hair into the vascular lumen. Of the three vasoconstrictors tested, endothelin-1 (ET-1) showed the greatest potency, being 1,000 times more potent than serotonin and phenylephrine. The classical endothelium-dependent vasodilators, acetylcholine, adenosine diphosphate (ADP) and histamine, caused dose-dependent relaxation of the rings; an effect which was completely abolished by the removal of endothelium. Pre-treatment with the nitric oxide (NO) synthase inhibitor, N omega-nitro-L-arginine, also markedly reduced the endothelium dependent relaxant responses to ADP. By contrast, the vasodilatory response to sodium nitroprusside was not affected by endothelial removal. We conclude that i) ET-1 is a potent vasoconstrictor of the human placental vascular bed and ii) placental villous endothelial cells synthesize and release relaxing factor(s) which could possibly be NO.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验