Leidich S D, Kostova Z, Latek R R, Costello L C, Drapp D A, Gray W, Fassler J S, Orlean P
Department of Biochemistry, University of Illinois at Urbana-Champaign 61801, USA.
J Biol Chem. 1995 Jun 2;270(22):13029-35. doi: 10.1074/jbc.270.22.13029.
To identify genes required for the synthesis of glycosyl phosphatidylinositol (GPI) membrane anchors in yeast, we devised a way to isolate GPI anchoring mutants in which colonies are screened for defects in [3H]-inositol incorporation into protein. The gpi1 mutant, identified in this way, is temperature sensitive for growth and defective in vitro in the synthesis of GlcNAc-phosphatidylinositol, the first intermediate in GPI biosynthesis (Leidich, S. D., Drapp, D. A., and Orlean, P. (1994) J. Biol. Chem. 269, 10193-10196). We report the isolation of two more conditionally lethal mutants, gpi2 and gpi3, which, like gpi1, have a temperature-sensitive defect in the incorporation of [3H]inositol into protein and which lack in vitro GlcNAc-phosphatidylinositol synthetic activity. Haploid Saccharomyces cerevisiae strains containing any pairwise combination of the gpi1, gpi2, and gpi3 mutations are inviable. The GPI2 gene, cloned by complementation of the gpi2 mutant's temperature sensitivity, encodes a hydrophobic 269-amino acid protein that resembles no other gene product known to participate in GPI assembly. Gene disruption experiments show that GPI2 is required for vegetative growth. Overexpression of the GPI2 gene causes partial suppression of the gpi1 mutant's temperature sensitivity, a result that suggests that the Gpi1 and Gpi2 proteins interact with one another in vivo. The gpi3 mutant is defective in the SPT14 gene, which encodes a yeast protein similar to the product of the mammalian PIG-A gene, which complements a GlcNAc-phosphatidylinositol synthesis-defective human cell line. In yeast, at least three gene products are required for the first step in GPI synthesis, as is the case in mammalian cells, and utilization of several different proteins at this stage is therefore likely to be a general characteristic of the GPI synthetic pathway.
为了鉴定酵母中糖基磷脂酰肌醇(GPI)膜锚合成所需的基因,我们设计了一种方法来分离GPI锚定突变体,通过筛选菌落中[3H] - 肌醇掺入蛋白质的缺陷来进行。以这种方式鉴定的gpi1突变体对生长具有温度敏感性,并且在体外合成GPI生物合成的第一个中间体GlcNAc - 磷脂酰肌醇方面存在缺陷(Leidich, S. D., Drapp, D. A., and Orlean, P. (1994) J. Biol. Chem. 269, 10193 - 10196)。我们报告了另外两个条件致死突变体gpi2和gpi3的分离,它们与gpi1一样,在[3H]肌醇掺入蛋白质方面具有温度敏感性缺陷,并且缺乏体外GlcNAc - 磷脂酰肌醇合成活性。含有gpi1、gpi2和gpi3突变的任何成对组合的单倍体酿酒酵母菌株都无法存活。通过互补gpi2突变体的温度敏感性克隆的GPI2基因编码一种疏水的269个氨基酸的蛋白质,该蛋白质与已知参与GPI组装的其他基因产物均不相似。基因破坏实验表明GPI2是营养生长所必需的。GPI2基因的过表达导致gpi1突变体的温度敏感性部分受到抑制,这一结果表明Gpi1和Gpi2蛋白在体内相互作用。gpi3突变体在SPT14基因中存在缺陷,该基因编码一种与哺乳动物PIG - A基因产物相似的酵母蛋白,后者可互补GlcNAc - 磷脂酰肌醇合成缺陷的人类细胞系。在酵母中,GPI合成的第一步至少需要三种基因产物,哺乳动物细胞也是如此,因此在这个阶段使用几种不同的蛋白质可能是GPI合成途径的一个普遍特征。