Smulders R H, van Geel I G, Gerards W L, Bloemendal H, de Jong W W
Department of Biochemistry, University of Nijmegen, The Netherlands.
J Biol Chem. 1995 Jun 9;270(23):13916-24. doi: 10.1074/jbc.270.23.13916.
alpha-Crystallin is a multimeric protein complex which is constitutively expressed at high levels in the vertebrate eye lens, where it serves a structural role, and at low levels in several non-lenticular tissues. Like other members of the small heat shock protein family, alpha-crystallin has a chaperone-like activity in suppressing nonspecific aggregation of denaturing proteins in vitro. Apart from the major alpha A- and alpha B-subunits, alpha-crystallin of rodents contains an additional minor subunit resulting from alternative splicing, alpha A(ins)-crystallin. This polypeptide is identical to normal alpha A-crystallin except for an insert peptide of 23 residues. To explore the structural and functional consequences of this insertion, we have expressed rat alpha A- and alpha A(ins)-crystallin in Escherichia coli. The multimeric particles formed by alpha A(ins) are larger and more disperse than those of alpha A, but they are native-like and display a similar thermostability and morphology, as revealed by gel permeation chromatography, tryptophan fluorescence measurements, and electron microscopy. However, as compared with alpha A, the alpha A(ins)-particles display a diminished chaperone-like activity in the protection of heat-induced aggregation of beta low-crystallin. Our experiments indicate that alpha A(ins)-multimers have a 3-4-fold reduced substrate binding capacity, which might be correlated to their increased particle size and to a shielding of binding sites by the insert peptides. The structure-function relationship of the natural mutant alpha A(ins)-crystallin may shed light on the mechanism of chaperone-like activity displayed by all small heat shock proteins.