Rosendahl G, Hansen L H, Douthwaite S
Department of Molecular Biology, Odense University, Denmark.
J Mol Biol. 1995 May 26;249(1):59-68. doi: 10.1006/jmbi.1995.0280.
The structure of domain II in all 23 S (and 23 S-like) rRNAs is constrained by a pseudoknot formed between nucleotides 1005 and 1138, and between 1006 and 1137 (Escherichia coli numbering). These nucleotides are exclusively conserved as 1005C.1138G and 1006C.1137G pairs in all Bacteria, Archaea and chloroplasts, whereas 1005G.1138C and 1006U.1137A pairs occur in Eukarya. We have mutagenized nucleotides 1005C-->G, 1006C-->U, 1137G-->A and 1138G-->C, both individually and in combinations, in a 23 S rRNA gene from the bacterium E. coli. The ability of 23 S rRNA to support cell growth is reduced when either of these base-pairs is disrupted, and it is completely abolished upon disruption of both base-pairs. Each mutant 23 S rRNA is assembled into 50 S subunits, but the mutant subunits do not stably interact with 30 S to engage in protein synthesis. Enzymatic and chemical probing of ribosomal particles reveals increased accessibility in the rRNA structure close to the sites of the mutations. The degree to which the mutations increase rRNA accessibility correlates with the severity of their phenotypic effects. Nucleotide 1131G is extremely reactive to dimethyl sulphate modification in wild-type subunits and ribosomes, but is rendered unreactive when either the pseudoknot is broken or when the r-proteins are removed. The structure of the pseudoknot region is possibly influenced by interaction of an r-protein at or close to the pseudoknot. Re-establishing the pseudoknot Watson-Crick interactions with one "eukaryal" (1005G.1138C or 1006U.1137A) pair and one "bacterial" C.G pair largely restores the structure and function of the rRNA. Bacterial ribosomes containing both these eukaryal pairs also participate in protein synthesis, although at much reduced efficiency, and the structure of their pseudoknot region is partially open and accessible.
在所有23S(以及23S样)rRNA中,结构域II的结构受1005与1138位核苷酸之间以及1006与1137位核苷酸之间形成的假结(按大肠杆菌编号)的限制。在所有细菌、古菌和叶绿体中,这些核苷酸专门保守为1005C.1138G和1006C.1137G碱基对,而在真核生物中则出现1005G.1138C和1006U.1137A碱基对。我们已在来自大肠杆菌的23S rRNA基因中,单独或组合地将1005C突变为G、1006C突变为U、1137G突变为A以及1138G突变为C。当这些碱基对中的任何一个被破坏时,23S rRNA支持细胞生长的能力就会降低,而当两个碱基对都被破坏时,这种能力则完全丧失。每个突变的23S rRNA都组装成50S亚基,但突变的亚基不能与30S稳定相互作用以参与蛋白质合成。对核糖体颗粒进行酶促和化学探测发现,靠近突变位点的rRNA结构的可及性增加。突变增加rRNA可及性的程度与其表型效应的严重程度相关。在野生型亚基和核糖体中,1131G对硫酸二甲酯修饰极具反应性,但当假结被破坏或r蛋白被去除时,它就变得无反应性。假结区域的结构可能受假结处或其附近r蛋白相互作用的影响。用一个“真核生物”(1005G.1138C或1006U.1137A)碱基对和一个“细菌”C.G碱基对重新建立假结的沃森-克里克相互作用,在很大程度上恢复了rRNA的结构和功能。含有这两个真核生物碱基对的细菌核糖体也参与蛋白质合成,尽管效率大大降低,并且它们假结区域的结构部分开放且可及。