Korytowski W, Bachowski G J, Geiger P G, Lin F, Zhao G, Girotti A W
Department of Biochemistry, Medical College of Wisconsin, Milwaukee 53226, USA.
Biochim Biophys Acta. 1995 May 29;1267(1):31-40. doi: 10.1016/0167-4889(95)00058-z.
Murine leukemia L1210 cells rendered deficient in glutathione peroxidase (GPX) and phospholipid hydroperoxide glutathione peroxidase (PHGPX) by Se deprivation (L.Se(-) cells) were found to be more sensitive to tert-butyl hydroperoxide (t-BuOOH) cytotoxicity than Se-replete controls (L.Se(+) cells). Human K562 cells, which express PHGPX, but not GPX, were also more sensitive to t-BuOOH in the Se-deficient (K.Se(-)) than Se-satisfied (K.Se(+)) condition. In examining the metabolic basis for selenoperoxidase-dependent resistance, we found that glucose-replete Se(-) cells reduce t-BuOOH to t-butanol far more slowly than Se(+) cells, the ratio of the first-order rate constants approximating that of the GPX activities (L1210 cells) or PHGPX activities (K562 cells). Monitoring peroxide-induced changes in GSH and GSSG gave consistent results; e.g., glucose-depleted L.Se(+) cells exhibited a first order loss of GSH that was substantially faster than that of glucose-depleted L.Se(-) cells. Under the conditions used, peroxide-induced conversion of GSH to GSSG could be stoichiometrically reversed by resupplying D-glucose, indicating that no significant lysis or GSSG efflux and/or interchange had taken place. The apparent first-order rate constant for GSH decay increased progressively for L1210 cells expressing a range of GPX activities from approximately 5% to 100%, demonstrating that peroxide detoxification is strictly dependent on enzyme content. The initial rate of 14CO2 release from D-[1-14C]glucose supplied in the medium was much greater for L.Se(+) or K.Se(+) cells than for their respective Se(-) counterparts, consistent with greater hexose monophosphate shunt activity in the former. These results highlight the importance of selenoperoxidase action in the glutathione cycle as a means by which tumor cells cope with hydroperoxide stress.
通过缺硒处理使谷胱甘肽过氧化物酶(GPX)和磷脂氢过氧化物谷胱甘肽过氧化物酶(PHGPX)缺乏的小鼠白血病L1210细胞(L.Se(-)细胞),被发现比富硒对照(L.Se(+)细胞)对叔丁基过氧化氢(t-BuOOH)的细胞毒性更敏感。表达PHGPX但不表达GPX的人K562细胞,在缺硒(K.Se(-))条件下也比硒充足(K.Se(+))条件下对t-BuOOH更敏感。在研究硒过氧化物酶依赖性抗性的代谢基础时,我们发现葡萄糖充足的Se(-)细胞将t-BuOOH还原为叔丁醇的速度比Se(+)细胞慢得多,一级速率常数的比值接近GPX活性(L1210细胞)或PHGPX活性(K562细胞)的比值。监测过氧化物诱导的谷胱甘肽(GSH)和氧化型谷胱甘肽(GSSG)的变化得到了一致的结果;例如,葡萄糖缺乏的L.Se(+)细胞中GSH的一级损失速度明显快于葡萄糖缺乏的L.Se(-)细胞。在所用条件下,通过重新供应D-葡萄糖,过氧化物诱导的GSH向GSSG的转化可以化学计量地逆转,这表明没有发生明显的细胞裂解或GSSG外流和/或交换。对于表达从约5%到100%一系列GPX活性的L1210细胞,GSH衰减的表观一级速率常数逐渐增加,这表明过氧化物解毒严格依赖于酶含量。培养基中供应的D-[1-14C]葡萄糖释放14CO2的初始速率,L.Se(+)或K.Se(+)细胞比它们各自的Se(-)对应物要大得多,这与前者中更高的磷酸己糖旁路活性一致。这些结果突出了硒过氧化物酶在谷胱甘肽循环中的作用的重要性,这是肿瘤细胞应对过氧化氢应激的一种方式。