Suppr超能文献

Genetic factors influencing murine hematopoietic productivity in culture.

作者信息

Phillips R L, Couzens M S, Van Zant G

机构信息

Department of Anatomy and Cell Biology, University of Michigan Medical School, Ann Arbor 48109, USA.

出版信息

J Cell Physiol. 1995 Jul;164(1):99-107. doi: 10.1002/jcp.1041640113.

Abstract

In order to study a previously described genetic difference manifested in stem cell kinetics of specific mouse strains, effects of this putative gene, stk, were measured on growth and expansion of stem and progenitor cell populations ex vivo. Bone marrow cells from each of two inbred mouse strains, C57BL/6J and DBA/2J, were placed into separate bioreactor cultures perfused continuously with growth medium containing erythropoietin (Epo), interleukin-3 (IL-3), granulocyte-macrphage colony stimulating factor (GM-CSF), and Kit ligand as well as 5% CO2. Expansion of cell numbers reached 20-fold for DBA/2J and 10-fold for C57BL/6J marrow within about 1 week of culture. Significant production was also seen of colony-forming unit (CFU)-GM (up nine-fold from input levels) just prior to the cell production peak, and, importantly, moderate expansion of day 12 colony-forming unit-spleen (CFU-S; two- to threefold) occurred as well, although CFU-S production peaked at a relatively short 4 days. CFU-S and CFU-GM levels declined rapidly in culture, either because of unfavorable growth conditions or terminal differentiation. Attempts to remove toxic metabolites by increasing the media perfusion rate resulted in a boost in cell expansion capability by DBA/2J marrow. In bioreactors in which stromal cells were established before marrow inoculation, there was greater expansion of CFU-S (especially by DBA/2J) and CFU-GM, although total cell yield appeared to be unaffected, perhaps because the maximum cell density had already been reached. The relative high potential for CFU-S expansion measured in DBA/2J marrow over that of C57BL/6J will be useful in following genetic contributions to bone marrow production capacity.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验