Stein P S, Victor J C, Field E C, Currie S N
Department of Biology, Washington University, St. Louis, Missouri 63130, USA.
J Neurosci. 1995 Jun;15(6):4343-55. doi: 10.1523/JNEUROSCI.15-06-04343.1995.
In a spinal turtle, unilateral stimulation in the rostral scratch receptive field elicited rhythmic fictive rostral scratching in ipsilateral hindlimb motor neurons; contralateral hip motor activity was also rhythmic and out-of-phase with ipsilateral hip motor activity. When left and right rostral scratch receptive fields were stimulated simultaneously, bilateral rhythmic fictive rostral scratching was produced; left hindlimb scratching was out-of-phase with right hindlimb scratching. Thus, spinal circuits coordinate interlimb phase during bilateral fictive scratching. We examined the contributions of contralateral spinal circuitry to the normal pattern of right hindlimb fictive rostral scratching by removing the left halves of the D7 segment and the hindlimb enlargement (D8-S2 segments). After left-hemicord removal, stimulation in the right rostral scratch receptive field usually elicited a variation of rostral scratching with rhythmic right hip flexor activity and no right hip extensor activity; thus, right hip flexor rhythm generation does not require left hindlimb enlargement circuitry. Normal right hindlimb rostral scratching with rhythmic alternation between hip flexor and extensor activities was rarely observed; thus, contralateral spinal circuitry contributes to the production of normal ipsilateral fictive rostral scratching. After left-hemicord removal, stimulation in the left rostral scratch receptive field elicited rhythmic right hip extensor activity; thus, contralateral spinal circuitry can generate a hip extensor rhythm during ipsilateral rostral scratch receptive field stimulation. Our observations and those of Berkowitz and Stein (1994a,b) support the concept that an ipsilateral hindlimb's normal rostral scratch motor pattern is generated by a modular central pattern generator that is bilaterally distributed in the spinal cord.
在一只脊髓龟中,对吻侧搔抓感受野进行单侧刺激会在同侧后肢运动神经元中引发有节律的虚构吻侧搔抓;对侧髋部运动活动也是有节律的,且与同侧髋部运动活动不同步。当同时刺激左右吻侧搔抓感受野时,会产生双侧有节律的虚构吻侧搔抓;左后肢搔抓与右后肢搔抓不同步。因此,脊髓回路在双侧虚构搔抓过程中协调肢体间的相位。我们通过切除D7节段的左半部分和后肢膨大(D8 - S2节段),研究了对侧脊髓回路对右后肢虚构吻侧搔抓正常模式的贡献。切除左侧半脊髓后,刺激右侧吻侧搔抓感受野通常会引发带有节律性右髋屈肌活动的吻侧搔抓变化,且没有右髋伸肌活动;因此,右髋屈肌节律的产生不需要左后肢膨大回路。很少观察到右后肢正常的带有髋屈肌和伸肌活动之间节律性交替的吻侧搔抓;因此,对侧脊髓回路有助于产生正常的同侧虚构吻侧搔抓。切除左侧半脊髓后,刺激左侧吻侧搔抓感受野会引发有节律的右髋伸肌活动;因此,对侧脊髓回路在同侧吻侧搔抓感受野刺激期间可以产生髋伸肌节律。我们的观察结果以及Berkowitz和Stein(1994a,b)的观察结果支持这样一种概念,即同侧后肢正常的吻侧搔抓运动模式是由双侧分布在脊髓中的模块化中枢模式发生器产生的。