Suppr超能文献

Mammalian brain-specific L-proline transporter. Neuronal localization of mRNA and enrichment of transporter protein in synaptic plasma membranes.

作者信息

Velaz-Faircloth M, Guadaño-Ferraz A, Henzi V A, Fremeau R T

机构信息

Department of Pharmacology, Duke University Medical Center, Durham, North Carolina 27710, USA.

出版信息

J Biol Chem. 1995 Jun 30;270(26):15755-61. doi: 10.1074/jbc.270.26.15755.

Abstract

The expression of a high affinity Na(+)- (and Cl-) dependent L-proline transporter (PROT) in subpopulations of putative glutamatergic pathways in rat brain raises the possibility of a specific physiological role(s) for this carrier in excitatory neurotransmission (Fremeau, R. T., Jr., Caron, M. G., and Blakely, R. D. (1992) Neuron 8, 915-926). However, the biochemical properties and regional, cellular, and subcellular distribution of the PROT protein have yet to be elucidated. Here, we document the brain-specific expression and neuronal localization of rat PROT mRNA. We also report the first identification and partial biochemical characterization of the mammalian brain PROT protein. An affinity-purified antipeptide antibody was produced that specifically recognized a single 68-kDa PROT protein on immunoblots of rat and human brain tissues. Deglycosylation of rat hippocampal membranes with peptide-N-glycosidase F reduced the apparent molecular mass of the native PROT protein from 68 to 53 kDa, the size of the primary PROT translation product determined by in vitro translation of the rat PROT cDNA in the absence of microsomes. Subcellular fractionation studies demonstrated that the PROT protein was enriched in synaptic plasma membranes but absent from postsynaptic densities. A differential distribution of PROT mRNA and protein was observed in rat striatum, suggesting that the transporter protein is synthesized in neuronal cell bodies in the cortex and exported to axon terminals in the caudate putamen. These findings warrant the consideration of a novel presynaptic regulatory role for this transporter in excitatory synaptic transmission.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验