Suppr超能文献

化学实验室中的人工智能。

Artificial intelligence within the chemical laboratory.

作者信息

Winkel P

机构信息

Department of Clinical Biochemistry, University Hospital of Copenhagen, Denmark.

出版信息

Ann Biol Clin (Paris). 1994;52(4):277-82.

PMID:7802352
Abstract

Various techniques within the area of artificial intelligence such as expert systems and neural networks may play a role during the problem-solving processes within the clinical biochemical laboratory. Neural network analysis provides a non-algorithmic approach to information processing, which results in the ability of the computer to form associations and to recognize patterns or classes among data. It belongs to the machine learning techniques which also include probabilistic techniques such as discriminant function analysis and logistic regression and information theoretical techniques. These techniques may be used to extract knowledge from example patients to optimize decision limits and identify clinically important laboratory quantities. An expert system may be defined as a computer program that can give advice in a well-defined area of expertise and is able to explain its reasoning. Declarative knowledge consists of statements about logical or empirical relationships between things. Expert systems typically separate declarative knowledge residing in a knowledge base from the inference engine: an algorithm that dynamically directs and controls the system when it searches its knowledge base. A tool is an expert system without a knowledge base. The developer of an expert system uses a tool by entering knowledge into the system. Many, if not the majority of problems encountered at the laboratory level are procedural. A problem is procedural if it is possible to write up a step-by-step description of the expert's work or if it can be represented by a decision tree. To solve problems of this type only small expert system tools and/or conventional programming are required.(ABSTRACT TRUNCATED AT 250 WORDS)

摘要

人工智能领域的各种技术,如专家系统和神经网络,可能在临床生化实验室的问题解决过程中发挥作用。神经网络分析为信息处理提供了一种非算法方法,使计算机能够在数据之间形成关联并识别模式或类别。它属于机器学习技术,机器学习技术还包括概率技术,如判别函数分析和逻辑回归以及信息理论技术。这些技术可用于从示例患者中提取知识,以优化决策界限并识别临床上重要的实验室指标。专家系统可定义为一种计算机程序,它能在明确界定的专业领域提供建议,并能够解释其推理过程。陈述性知识由关于事物之间逻辑或经验关系的陈述组成。专家系统通常将知识库中的陈述性知识与推理引擎分开:推理引擎是一种算法,当系统搜索其知识库时,它会动态地指导和控制系统。工具是没有知识库的专家系统。专家系统的开发者通过将知识输入系统来使用工具。实验室层面遇到的许多问题(如果不是大多数问题的话)都是程序性的。如果可以逐步描述专家的工作,或者可以用决策树来表示,那么这个问题就是程序性的。要解决这类问题,只需要小型专家系统工具和/或传统编程即可。(摘要截选至250词)

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验