Bailly C, Michaux C, Colson P, Houssier C, Sun J S, Garestier T, Hélène C, Hénichart J P, Rivalle C, Bisagni E
Institut de Recherches sur le Cancer, INSERM U124, Lille, France.
Biochemistry. 1994 Dec 27;33(51):15348-64. doi: 10.1021/bi00255a016.
Molecular modeling of complexes between the octanucleotide d(CGATATCG)2 and either a monocationic or biscationic distamycin-ellipticine hybrid molecule predicted that the extra positive charge on the latter conjugate ligand should ensure tight fitting into the minor groove of the duplex without affecting intercalation of the ellipticine chromophore. To test this prediction, we have synthesized a biscationic compound Distel (2+) and investigated its interaction with DNA using various optical and gel electrophoresis techniques. Viscosity, fluorescence lifetime, and circular and linear dichroism measurements bear out the validity of the calculations and show that Distel (2+) does indeed come to lie with its distamycin moiety in the minor groove of DNA and its ellipticine ring intercalated nearby. Linear dichroism experiments with a range of polynucleotides indicate that, unlike its monocationic homologue, the biscationic ligand engages in bidentate binding to AT sequences but not to GC sequences. Footprinting studies employing DNase I and methidiumpropyl-EDTA.FeII as DNA cleaving agents reveal that the biscationic hybrid is notably selective for AT-rich sequences in DNA. The concentrations required to detect a clear footprint at AT sites with Distel (2+) are 4- to 10-fold lower than those required to produce comparable DNase I footprints with distamycin alone. Also, in accord with the energy-minimized model of the hybrid-oligonucleotide complex, chemical probing experiments using diethyl pyrocarbonate and osmium tetroxide reveal that the hybrid causes significant distortion of the DNA helix, explicable in terms of bending of the duplex toward the minor groove, which greatly enhances the reactivity toward probes in the major groove of the DNA. The experimental results help to identify the determinant factors, predominantly steric and electrostatic interactions, which shape the DNA-binding reaction. Thus, molecular modeling has correctly predicted the DNA-binding properties of a doubly charged ligand and shown that appending an auxiliary basic group onto the distamycin moiety was the right way to proceed in order to convert a nonspecific conjugate into a highly specific DNA reader.
八核苷酸d(CGATATCG)2与单阳离子或双阳离子的双氢链霉素-椭圆玫瑰树碱杂合分子之间复合物的分子模型预测,后一种共轭配体上额外的正电荷应确保紧密契合双链体的小沟,而不影响椭圆玫瑰树碱发色团的嵌入。为了验证这一预测,我们合成了一种双阳离子化合物Distel (2+),并使用各种光学和凝胶电泳技术研究了它与DNA的相互作用。粘度、荧光寿命以及圆二色性和线性二色性测量结果证实了计算的有效性,并表明Distel (2+)确实以其双氢链霉素部分位于DNA的小沟中,其椭圆玫瑰树碱环在附近嵌入。对一系列多核苷酸进行的线性二色性实验表明,与其单阳离子同系物不同,双阳离子配体与AT序列进行双齿结合,但不与GC序列结合。使用脱氧核糖核酸酶I和甲基丙基-乙二胺四乙酸铁II作为DNA切割剂的足迹研究表明,双阳离子杂合体对DNA中富含AT的序列具有显著的选择性。用Distel (2+)在AT位点检测到清晰足迹所需的浓度比单独使用双氢链霉素产生可比的脱氧核糖核酸酶I足迹所需的浓度低4至10倍。此外,与杂合寡核苷酸复合物的能量最小化模型一致,使用焦碳酸二乙酯和四氧化锇的化学探针实验表明,该杂合体导致DNA螺旋发生显著扭曲,这可以用双链体向小沟弯曲来解释,这大大增强了对DNA大沟中探针的反应性。实验结果有助于确定主要由空间和静电相互作用构成DNA结合反应的决定因素。因此,分子模型正确地预测了双电荷配体的DNA结合特性,并表明在双氢链霉素部分附加一个辅助碱性基团是将非特异性共轭物转化为高度特异性DNA阅读器的正确方法。