McGee D L, Tharp H S, Roemer R B
Department of Mathematics, University of Arizona, Tucson 85721.
Int J Hyperthermia. 1994 Sep-Oct;10(5):675-89. doi: 10.3109/02656739409022447.
We examine the ability of neural networks to estimate the tissue perfusion values present and the minimum temperature in numerically calculated (Pennes, Bioheat Transfer Equation) steady-state hyperthermia temperature fields based on a limited number of measured temperatures within this field A hierarchical system of neural networks consisting of a first layer of pattern recognizing neural networks and a second layer of hypersurface reconstructing neural networks is shown to be capable of estimating these variables within a selected error tolerance. The results indicate that estimating the minimum tumour temperature directly with the system of neural networks may be more effective than using the indirect method of numerically recreating a temperature field with perfusion estimates and then obtaining the minimum tumour temperature from the estimated temperature field. Additional results indicate that if the locations of the measured temperatures within the temperature field are selected appropriately, the hierarchical system of neural networks can tolerate a moderate level of model mismatch. This model mismatch can come from errors in modelling the tumour boundaries, the sensor locations, or the magnitude of the power deposition. This paper is not intended to assess or demonstrate clinical applicability but to be a first step in investigating the feasibility of neural networks for parameter estimation related to hyperthermia studies.
我们研究神经网络基于数值计算(彭尼斯生物热传递方程)的稳态热疗温度场中有限数量的测量温度来估计存在的组织灌注值和最低温度的能力。由第一层模式识别神经网络和第二层超曲面重建神经网络组成的分层神经网络系统被证明能够在选定的误差容限内估计这些变量。结果表明,直接用神经网络系统估计最低肿瘤温度可能比使用通过灌注估计数值重建温度场然后从估计的温度场中获得最低肿瘤温度的间接方法更有效。其他结果表明,如果温度场内测量温度的位置选择得当,分层神经网络系统可以容忍一定程度的模型不匹配。这种模型不匹配可能来自肿瘤边界建模、传感器位置或功率沉积大小的误差。本文并非旨在评估或证明临床适用性,而是迈向研究神经网络在热疗研究相关参数估计方面可行性的第一步。