Suppr超能文献

硫酮类外源性物质二乙基二硫代氨基甲酸甲酯的谷胱甘肽及谷胱甘肽-S-转移酶依赖性氧化脱硫作用

Glutathione- and glutathione-S-transferase-dependent oxidative desulfuration of the thione xenobiotic diethyldithiocarbamate methyl ester.

作者信息

Madan A, Williams T D, Faiman M D

机构信息

Department of Pharmacology and Toxicology, University of Kansas, Lawrence 66045.

出版信息

Mol Pharmacol. 1994 Dec;46(6):1217-25.

PMID:7808445
Abstract

Oxidative desulfuration of diethyldithiocarbamate methyl ester (DDTC-Me), a thione xenobiotic and a metabolite of disulfiram, was studied. Using a rat liver microsomal incubation system, DDTC-Me was oxidized at the thionosulfur group, forming DDTC-Me sulfine. Only minimal desulfuration of DDTC-Me to S-methyl-N,N-diethylthiolcarbamate (DETC-Me) occurred. Desulfuration of DDTC-Me increased 4-fold when the microsomal incubation was supplemented with reduced glutathione (GSH) and increased 8-fold when both GSH and glutathione-S-transferase (EC 2.5.1.18) were added. Similar results were obtained using a simplified system containing DDTC-Me sulfine, GSH, and glutathione-S-transferase. This suggested that DDTC-Me sulfine is a stable intermediate formed before DDTC-Me is desulfurated to DETC-Me. This unprecedented desulfuration process can be explained as follows. GSH attacks the oxithiirane isomer of DDTC-Me sulfine, resulting in ring opening followed by loss of glutathione hydrodisulfide, which is reduced by GSH to oxidized glutathione and H2S. GSH can also reduce DDTC-Me sulfine to DDTC-Me. This mechanism is supported by in vitro studies. An approximately 1:1 stoichiometry was observed for the formation of H2S and DETC-Me. A 1:1 stoichiometry was also observed for the consumption of DDTC-Me sulfine, formation of DETC-Me plus DDTC-Me, and formation of oxidized glutathione. Glutathione hydrodisulfide was trapped by derivatization in situ using 4-vinylpyridine. Oxidative desulfuration of a series of dithiocarbamate esters also followed a similar mechanism.

摘要

研究了二乙基二硫代氨基甲酸甲酯(DDTC-Me)的氧化脱硫反应,DDTC-Me是一种硫酮类外源性物质,也是双硫仑的一种代谢产物。使用大鼠肝微粒体孵育系统,DDTC-Me在硫代硫基团处被氧化,形成DDTC-Me亚砜。DDTC-Me仅极少地脱硫生成S-甲基-N,N-二乙硫代氨基甲酸酯(DETC-Me)。当微粒体孵育体系中添加还原型谷胱甘肽(GSH)时,DDTC-Me的脱硫反应增加了4倍,当同时添加GSH和谷胱甘肽-S-转移酶(EC 2.5.1.18)时,脱硫反应增加了8倍。使用包含DDTC-Me亚砜、GSH和谷胱甘肽-S-转移酶的简化系统也得到了类似结果。这表明DDTC-Me亚砜是DDTC-Me脱硫生成DETC-Me之前形成的一种稳定中间体。这种前所未有的脱硫过程可解释如下。GSH攻击DDTC-Me亚砜的氧硫杂环丙烷异构体,导致开环,随后失去谷胱甘肽二硫化物,谷胱甘肽二硫化物被GSH还原为氧化型谷胱甘肽和H2S。GSH还可将DDTC-Me亚砜还原为DDTC-Me。该机制得到了体外研究的支持。观察到H2S和DETC-Me的形成具有约1:1的化学计量关系。对于DDTC-Me亚砜的消耗、DETC-Me加DDTC-Me的形成以及氧化型谷胱甘肽的形成,也观察到了1:1的化学计量关系。谷胱甘肽二硫化物通过使用4-乙烯基吡啶原位衍生化进行捕获。一系列二硫代氨基甲酸酯的氧化脱硫反应也遵循类似机制。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验