Suppr超能文献

Inhibition of L-type Ca2+ channels in portal vein myocytes by the enantiomers of oxodipine.

作者信息

Baron A, Rakotoarisoa L, Leprêtre N, Mironneau J

机构信息

Laboratoire de Physiologie Cellulaire et Pharmacologie Moléculaire, URA CNRS 1489, Université de Bordeaux II, France.

出版信息

Eur J Pharmacol. 1994 Sep 15;269(1):105-13. doi: 10.1016/0922-4106(94)90032-9.

Abstract

We studied the effects of the enantiomers of the dihydropyridine derivative, 4-(2,3 methylenedioxyphenyl)-1,4-dihydro-2,6-dimethyl-3 carboxyethyl-5-carboxymethyl-pyridine (oxodipine), on voltage-dependent Ca2+ channels of rat portal vein myocytes by combining electrophysiological techniques and binding studies. (+)- and (-)-oxodipine depressed the L-type Ca2+ current in a concentration-dependent manner, with similar IC50 values (around 10 nM) but had no appreciable effect on the intracellular Ca2+ stores. The steady-state inactivation curve for the Ca2+ current was shifted along the voltage axis to negative membrane potentials indicating that the block of the Ca2+ current by oxodipine enantiomers increased with depolarization. The voltage-dependent inhibitory property of oxodipine was related to an increase in 3H-4-(benzo-2-oxa-1,3-diazol-4-yl)-1,4-dihydro-2,6-dimethy lpy ridine- 3,5-dicarboxylic acid 3-isopropyl, 5-methyl ester (isradipine) binding affinity without change in binding capacity. In normally polarized intact strips, interactions of (+)- and (-)-oxodipine with 3H-isradipine binding indicated a stimulation of the radioligand binding at low concentrations of (-)-oxodipine while the (+) enantiomer seemed to act as a competitive ligand. Depolarization of intact strips with 135 mM K(+)-solutions increased the apparent affinity of the enantiomers of oxodipine, and abolished the stimulating effect of (-)-oxodipine on the binding of 3H-isradipine. Inhibition of Ca2+ current was increased in the simultaneous presence of 1 nM of (+)- and (-)-oxodipine when compared to the inhibitions induced by 2 nM of each enantiomer.(ABSTRACT TRUNCATED AT 250 WORDS)

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验