Chiueh C C, Wu R M, Mohanakumar K P, Sternberger L M, Krishna G, Obata T, Murphy D L
Unit on Neurotoxicology and Neuroprotection, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland 20892.
Ann N Y Acad Sci. 1994 Nov 17;738:25-36. doi: 10.1111/j.1749-6632.1994.tb21786.x.
The in vivo generation of .OH free radicals in specific brain regions can be measured by intracerebral microdialysis perfusion of salicylate, avoiding many of the pitfalls inherent in systemic administration of salicylate. Direct infusion of salicylate into the brain can minimize the hepatic hydroxylation of salicylate and its contribution to brain levels of 2,5-DHBA. Levels of 2,5-DHBA detected in the brain dialysate may reflect the .OH adduct plus some enzymatic hydroxylation of salicylate in the brain. After minimizing the contribution of enzyme and/or blood-borne 2,5-DHBA, the present data demonstrate the validity of the use of 2,3-DHBA and apparently 2,5-DHBA as indices of .OH formation in the brain. Therefore, intracranial microdialysis of salicylic acid and measurement of 2,3-DHBA appears to be a useful .OH trapping procedure for monitoring the time course of .OH generation in the extracellular fluid of the brain. These results indicate that nonenzymatic and/or enzymatic oxidation of the dopamine released by MPTP analogues in the extracellular fluid may play a key role in the generation of .OH free radicals in the iron-rich basal ganglia. Moreover, a site-specific generation of cytotoxic .OH free radicals and quinone/semiquinone radicals in the striatum may cause the observed lipid peroxidation, calcium overload, and retrograde degeneration of nigrostriatal neurons. This free-radical-induced nigral injury can be suppressed by antioxidants (i.e., U-78517F, DMSO, and deprenyl) and possibly hypothermia as well. In the future, this in vivo detection of .OH generation may be useful in answering some of the fundamental questions concerning the relevance of oxidants and antioxidants in neurodegenerative disorders during aging. It could also pave the way for the research and development of novel neuroprotective antioxidants and strategies for the early or preventive treatment of neurodegenerative disorders, such as Parkinson's disease (Wu et al., this issue), amyotrophic lateral sclerosis, head trauma, and possibly Alzheimer's cognitive dysfunction as well. In conclusion, this in vivo free-radical trapping procedure provides evidence to support a current working hypothesis that a site-specific formation of cytotoxic .OH free radicals in the basal ganglia may be one of the neurotoxic mechanisms underlying nigrostriatal degeneration and Parkinsonism caused by the dopaminergic neurotoxin MPTP. Addendum added in proof: The controversy concerning possible neurotoxic and/or neuroprotective roles of NO. in cell cultures was discussed and debated at the symposium (Wink et al., this issue; Dawson et al., this issue; Lipton et al., this issue).(ABSTRACT TRUNCATED AT 400 WORDS)
通过向脑内微透析灌注水杨酸盐,可以测量特定脑区中·OH自由基的体内生成情况,避免了全身给予水杨酸盐所固有的许多缺陷。将水杨酸盐直接注入脑内可以使水杨酸盐的肝羟基化及其对脑内2,5 - DHBA水平的贡献降至最低。在脑透析液中检测到的2,5 - DHBA水平可能反映·OH加合物以及脑内水杨酸盐的一些酶促羟基化。在将酶和/或血源性2,5 - DHBA的贡献降至最低后,目前的数据证明了使用2,3 - DHBA以及显然还有2,5 - DHBA作为脑内·OH形成指标的有效性。因此,水杨酸的颅内微透析和2,3 - DHBA的测量似乎是一种有用的·OH捕获方法,用于监测脑外液中·OH生成的时间进程。这些结果表明,MPTP类似物在细胞外液中释放的多巴胺的非酶促和/或酶促氧化可能在富含铁的基底神经节中·OH自由基的生成中起关键作用。此外,纹状体内细胞毒性·OH自由基和醌/半醌自由基的位点特异性生成可能导致观察到的脂质过氧化、钙超载以及黑质纹状体神经元的逆行性变性。这种自由基诱导的黑质损伤可以被抗氧化剂(即U - 78517F、二甲基亚砜和司来吉兰)以及可能还有低温抑制。未来,这种·OH生成的体内检测可能有助于回答一些关于衰老过程中氧化应激和抗氧化剂在神经退行性疾病中的相关性的基本问题。它也可能为新型神经保护性抗氧化剂的研发以及神经退行性疾病(如帕金森病(Wu等人,本期)、肌萎缩侧索硬化症、头部创伤以及可能还有阿尔茨海默病认知功能障碍)的早期或预防性治疗策略铺平道路。总之,这种体内自由基捕获方法为支持当前的一个工作假设提供了证据,即基底神经节中细胞毒性·OH自由基的位点特异性形成可能是多巴胺能神经毒素MPTP引起的黑质纹状体变性和帕金森症的神经毒性机制之一。校样中添加的附录:关于NO在细胞培养中可能的神经毒性和/或神经保护作用的争议在研讨会上进行了讨论和辩论(Wink等人,本期;Dawson等人,本期;Lipton等人,本期)。(摘要截断于400字)