Snow K, Tester D J, Kruckeberg K E, Schaid D J, Thibodeau S N
Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905.
Hum Mol Genet. 1994 Sep;3(9):1543-51. doi: 10.1093/hmg/3.9.1543.
This study addresses mechanism of instability of the FMR-1 (CGG)n-repeat, and investigates features which may distinguish between normal stable and fragile X unstable repeats. To achieve this, we have sequenced 178 alleles to analyze patterns of AGG interruptions within the CGG repeat, and have typed the (CA)n-repeat at DXS548 for 204 chromosomes. Overall, our data is consistent with the idea that the length of uninterrupted CGG repeats determines instability. We predict that certain sequence configurations [no AGG, and (CGG)9-11AGG(CGG) > or = 20] present in the general population, are predisposed towards replication slippage. Association between these proposed predisposing repeats and DXS548 alleles may explain the previously reported frequencies of fragile X mutations and large-size normal repeats on specific haplotype backgrounds. We propose that predisposing alleles arise in the general population by as yet undefined mechanism(s) which introduce a relatively long stretch of pure CGG repeat at the 3'-end (relative to the direction of transcription) of the FMR-1 repeat region. The 3' pure repeat may then be susceptible to further expansion by replication slippage. Slippage on these predisposing chromosomes could accumulate over many generations until a threshold size is reached, at which point the repeat is susceptible to greater instability (i.e. premutation stage). Thus, results suggest that evolution of fragile X full mutations could involve 4 definable stages: 1) ancestral events leading to the formation of predisposing alleles which have large total repeat length (e.g. between 35 to 50) but no AGG or 1 AGG; 2) gradual slippage of these predisposing alleles to small premutations (S alleles); 3) conversion from S alleles to larger premutations (Z); 4) massive expansion from a Z allele to a full mutation (L).
本研究探讨了FMR-1(CGG)n重复序列的不稳定性机制,并研究了可区分正常稳定和脆性X不稳定重复序列的特征。为实现这一目标,我们对178个等位基因进行了测序,以分析CGG重复序列内AGG中断的模式,并对204条染色体的DXS548处的(CA)n重复序列进行了分型。总体而言,我们的数据与不间断CGG重复序列的长度决定不稳定性这一观点一致。我们预测,一般人群中存在的某些序列构型[无AGG,以及(CGG)9-11AGG(CGG)≥20]易发生复制滑动。这些拟易感性重复序列与DXS548等位基因之间的关联,可能解释了先前报道的特定单倍型背景下脆性X突变和大尺寸正常重复序列的频率。我们提出,易感性等位基因在一般人群中通过尚未明确的机制产生,这些机制在FMR-1重复区域的3'端(相对于转录方向)引入一段相对较长的纯CGG重复序列。然后,3'纯重复序列可能易受复制滑动进一步扩展的影响。这些易感性染色体上的滑动可能会在许多代中积累,直到达到阈值大小,此时重复序列易受更大的不稳定性影响(即前突变阶段)。因此,结果表明脆性X完全突变的演变可能涉及4个可定义的阶段:1)导致形成总重复长度较大(例如35至50之间)但无AGG或1个AGG的易感性等位基因的祖先事件;2)这些易感性等位基因逐渐滑动为小的前突变(S等位基因);3)从S等位基因转变为更大的前突变(Z);4)从Z等位基因大量扩展为完全突变(L)。